CHAPTER 6

TRIANGLES

ONE MARK QUESTIONS

Multiple Choice Questions

1. In the given figure, $D E \| B C$. The value of $E C$ is

(a) 1.5 cm
(b) 3 cm
(c) 2 cm
(d) 1 cm

Ans:
Since,

$$
\begin{aligned}
& D E \| B C \\
& \frac{A D}{D B}=\frac{A E}{E C} \\
& \frac{1.5}{3}=\frac{1}{E C} \Rightarrow E C=2 \mathrm{~cm}
\end{aligned}
$$

Thus (c) is correct option.
2. In the given figure, x is

(a) $\frac{a b}{a+b}$
(b) $\frac{a c}{b+c}$
(c) $\frac{b c}{b+c}$
(d) $\frac{a c}{a+c}$

Ans :

In $\triangle K P N$ and $\triangle K L M, \angle K$ is common and we have

$$
\angle K N P=\angle K M L=46^{\circ}
$$

Thus by $A-A$ criterion of similarity,

$$
\Delta K N P \sim \Delta K M L
$$

Thus

$$
\begin{aligned}
\frac{K N}{K M} & =\frac{N P}{M L} \\
\frac{c}{b+c} & =\frac{x}{a} \Rightarrow x=\frac{a c}{b+c}
\end{aligned}
$$

Thus (b) is correct option.
3. $\triangle A B C$ is an equilateral triangle with each side of length $2 p$. If $A D \perp B C$ then the value of $A D$ is
(a) $\sqrt{3}$
(b) $\sqrt{3} p$
(c) $2 p$
(d) $4 p$

Ans:
We have

$$
A B=B C=C A=2 p
$$

and

$$
A D \perp B C
$$

In $\triangle A D B$,

$$
\begin{aligned}
A B^{2} & =A D^{2}+B D^{2} \\
(2 p)^{2} & =A D^{2}+p^{2} \\
A D^{2} & =\sqrt{3} p
\end{aligned}
$$

Thus (b) is correct option.

Chap 6
4. Which of the following statement is false?
(a) All isosceles triangles are similar.
(b) All quadrilateral are similar.
(c) All circles are similar.
(d) None of the above

Ans :
Isosceles triangle is a triangle in which two side of equal length. Thus two isosceles triangles may not be similar. Hence statement given in option (a) is false.
Thus (a) is correct option.
5. Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m , then distance between their tops is
(a) 12 m
(b) 14 m
(c) 13 m
(d) 11 m

Ans :
Let $A B$ and $C D$ be the vertical poles as shown below.

We have

$$
A B=6 \mathrm{~m}, C D=11 \mathrm{~m}
$$

and

$$
\begin{aligned}
A C & =12 \mathrm{~m} \\
D E & =C D-C E \\
& =(11-6) \mathrm{m}=5 \mathrm{~m}
\end{aligned}
$$

In right angled, $\triangle B E D$,

$$
\begin{aligned}
B D^{2} & =B E^{2}+D E^{2}=12^{2}+5^{2}=169 \\
B D & =\sqrt{169} \mathrm{~m}=13 \mathrm{~m}
\end{aligned}
$$

Hence, distance between their tops is 13 m .
Thus (c) is correct option.
6. In a right angled $\triangle A B C$ right angled at B, if P and Q are points on the sides $A B$ and $B C$ respectively, then
(a) $A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
(b) $2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
(c) $A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
(d) $A Q+C P=\frac{1}{2}(A C+P Q)$

Ans :
In right angled $\triangle A B Q$ and $\triangle C P B$,

$$
C P^{2}=C B^{2}+B P^{2}
$$

and $A Q^{2}=A B^{2}+B Q^{2}$

$$
\begin{aligned}
C P^{2}+A Q^{2} & =C B^{2}+B P^{2}+A B^{2}+B Q^{2} \\
& =C B^{2}+A B^{2}+B P^{2}+B Q^{2} \\
& =A C^{2}+P Q^{2}
\end{aligned}
$$

Thus (c) is correct option.
7. It is given that, $\triangle A B C \sim \triangle E D F$ such that $A B=5 \mathrm{~cm}, A C=7 \mathrm{~cm}, D F=15 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$ then the sum of the remaining sides of the triangles is
(a) 23.05 cm
(b) 16.8 cm
(c) 6.25 cm
(d) 24 cm

Ans :

We have $\quad \triangle A B C \sim \triangle E D F$

Now

$$
\frac{5}{12}=\frac{7}{E F}=\frac{B C}{15}
$$

Taking first and second ratios, we get

$$
\begin{aligned}
\frac{5}{12} & =\frac{7}{E F} \Rightarrow E F=\frac{7 \times 12}{5} \\
& =16.8 \mathrm{~cm}
\end{aligned}
$$

Taking first and third ratios, we get

$$
\begin{aligned}
\frac{5}{12} & =\frac{B C}{15} \Rightarrow B C=\frac{5 \times 15}{12} \\
& =6.25 \mathrm{~cm}
\end{aligned}
$$

Now, sum of the remaining sides of triangle,

$$
E F+B C=16.8+6.25=23.05 \mathrm{~cm}
$$

Thus (a) is correct option.
8. The area of a right angled triangle is 40 sq cm and its perimeter is 40 cm . The length of its hypotenuse is
(a) 16 cm
(b) 18 cm
(c) 17 cm
(d) data insufficient

Ans: (b) 18 cm
Let c be the hypotenuse of the triangle, a and b be other sides.

Now $\quad c=\sqrt{a^{2}+b^{2}}$
We have, $\quad a+b+c=40$ and $\frac{1}{2} a b=40 \Rightarrow a b=80$

$$
c=40-(a+b) \text { and } a b=80
$$

Squaring $c=40-(a+b)$ we have

$$
\begin{aligned}
c^{2} & =[40-(a+b)]^{2} \\
a^{2}+b^{2} & =1600-2 \times 40(a+b)+(a+b)^{2} \\
a^{2}+b^{2} & =1600-2 \times 40(a+b)+a^{2}+2 a b+b^{2} \\
0 & =1600-2 \times 40(a+b)+2 \times 80 \\
0 & =20-(a+b)+2 \\
a+b & =22 \\
c & =40-(a+b)=40-22=18 \mathrm{~cm}
\end{aligned}
$$

Thus (b) is correct option.
9. Assertion : In the $\triangle A B C, A B=24 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $A C=26 \mathrm{~cm}$, then $\triangle A B C$ is a right angle triangle.
Reason : If in two triangles, their corresponding angles are equal, then the triangles are similar.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have,

$$
\begin{aligned}
A B^{2}+B C^{2} & =(24)^{2}+(10)^{2} \\
& =576+100=676=A C^{2}
\end{aligned}
$$

Thus $A B^{2}+B C^{2}=A C^{2}$ and $A B C$ is a right angled triangle.
Also, two triangle are similar if their corresponding angles are equal.
Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). Thus (b) is correct option.

Fill in the Blank Questions

10. A line drawn through the mid-point of one side of a triangle parallel to another side bisects the \qquad side.
Ans :
third
11. theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Ans :
Pythagoras
12. Line joining the mid-points of any two sides of a triangle is \qquad to the third side.
Ans :
parallel
13. All squares are \qquad
Ans :
similar
14. Two triangles are said to be \qquad if corresponding angles of two triangles are equal.
Ans :
equiangular
15. All similar figures need not be \qquad
Ans :
congruent
16. All circles are \qquad
Ans :
similar
17. If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the \qquad side.
Ans :
third
18. If a line divides any two sides of a triangle in the same ratio, then the line is \qquad to the third side.
Ans :
parallel
19. All congruent figures are similar but the similar figures need \qquad be congruent.
Ans :
not
20. Two figures are said to be \qquad if they have
same shape but not necessarily the same size.
Ans :
similar
21. \qquad theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
Ans :
Basic proportionality
22. All \qquad triangles are similar.
Ans :
equilateral
23. Two figures having the same shape and size are said to be \qquad
Ans :
congruent
24. Two triangles are similar if their corresponding sides are \qquad
Ans :
in the same ratio.
25. $\triangle A B C$ is an equilateral triangle of side $2 a$, then length of one of its altitude is \qquad .
Ans :
[Board 2020 Delhi Standard]
$\triangle A B C$ is an equilateral triangle as shown below, in which $A D \perp B C$.

Using Pythagoras theorem we have

$$
\begin{aligned}
A B^{2} & =(A D)^{2}+(B D)^{2} \\
(2 a)^{2} & =(A D)^{2}+(a)^{2} \\
4 a^{2}-a^{2} & =(A D)^{2} \\
(A D)^{2} & =3 a^{2} \\
A D & =a \sqrt{3}
\end{aligned}
$$

Hence, the length of attitude is $a \sqrt{3}$.
26. $\triangle A B C$ and $\triangle B D E$ are two equilateral triangle such that D is the mid-point of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is \qquad .
Ans :
[Board 2020 Delhi Standard]
From the given information we have drawn the figure as below.

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)} & =\frac{\frac{\sqrt{3}}{4}(B C)^{2}}{\frac{\sqrt{3}}{4}(B D)^{2}}=\frac{(B C)^{2}}{\left(\frac{1}{2} B C\right)^{2}} \\
& =\frac{4 B C^{2}}{B C^{2}}=\frac{4}{1}=4: 1
\end{aligned}
$$

27. A ladder 10 m long reaches a window 8 m above the ground. The distance of the foot of the ladder from the base of the wall is \qquad m.

Ans :
[Board 2020 Delhi Standard]
Let $A B$ be the height of the window above the ground and $B C$ be a ladder.

Here,

$$
A B=8 \mathrm{~m}
$$

and

$$
A C=10 \mathrm{~m}
$$

In right angled triangle $A B C$,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
10^{2} & =8^{2}+B C^{2} \\
B C^{2} & =100-64=36 \\
B C & =6 \mathrm{~m}
\end{aligned}
$$

28. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, \quad A C=12 \mathrm{~cm} \quad$ and $B C=6 \mathrm{~cm}$, then $\angle B=$ \qquad
Ans:
[Board 2020 OD Standard]
We have

$$
\begin{aligned}
& A B=6 \sqrt{3} \mathrm{~cm} \\
& A C=12 \mathrm{~cm} \text { and } \\
& B C=6 \mathrm{~cm}
\end{aligned}
$$

Now

$$
A B^{2}=36 \times 3=108
$$

$$
A C^{2}=144
$$

and

$$
B C^{2}=36
$$

In can be easily observed that above values satisfy Pythagoras theorem,

Thus

$$
\begin{aligned}
A B^{2}+B C^{2} & =A C^{2} \\
108+36 & =144 \mathrm{~cm}
\end{aligned}
$$

$$
\angle B=90^{\circ}
$$

29. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of the first triangle is 9 cm , then the corresponding side of second triangle is

Ans :

[Board 2020 Delhi Basic]
Ratio of the perimeter of two similar triangles is equal to the ratio of corresponding sides.

Thus

$$
\begin{aligned}
\frac{25}{15} & =\frac{9}{\text { side }} \\
\text { side } & =\frac{9 \times 15}{25}=5.4 \mathrm{~cm}
\end{aligned}
$$

Very Short Answer Questions

30. $\triangle A B C$ is isosceles with $A C=B C$. If $A B^{2}=2 A C^{2}$, then find the measure of $\angle C$.
Ans:
[Board 2020 Delhi Basic]
We have

$$
\begin{aligned}
& A B^{2}=2 A C^{2} \\
& A B^{2}=A C^{2}+A C^{2} \\
& A B^{2}=B C^{2}+A C^{2}
\end{aligned}
$$

($B C=A C$)
It satisfies the Pythagoras theorem. Thus according to converse of Pythagoras theorem, $\triangle A B C$ is a right angle triangle and $\angle C=90^{\circ}$.

31. In Figure, $D E \| B C$. Find the length of side $A D$, given that $A E=1.8 \mathrm{~cm}, B D=7.2 \mathrm{~cm}$ and $C E=5.4 \mathrm{~cm}$.

Ans :

[Board 2019 OD]
Since $D E \| B C$ we have

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Substituting the values, we get

$$
\begin{aligned}
\frac{A D}{7.2} & =\frac{1.8}{5.4} \\
A D & =\frac{1.8 \times 7.2}{5.4}=\frac{12.96}{5.4}=2.4 \mathrm{~cm}
\end{aligned}
$$

Chap 6

32. In $\triangle A B C, D E \| B C$, find the value of x.

Ans:
[Board Term-1 2016]
In the given figure $D E \| B C$, thus

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{x}{x+1} & =\frac{x+3}{x+5} \\
x^{2}+5 x & =x^{2}+4 x+3 \\
x & =3
\end{aligned}
$$

33. In the given figure, if $\angle A=90^{\circ}, \angle B=90^{\circ}, O B=4.5$ $\mathrm{cm} O A=6 \mathrm{~cm}$ and $A P=4 \mathrm{~cm}$ then find $Q B$.

Ans:
[Board Term-1, 2015]
In $\triangle P A O$ and $\triangle Q B O$ we have

$$
\angle A=\angle B=90^{\circ}
$$

Vertically opposite angle,

$$
\angle P O A=\angle Q O B
$$

Thus

$$
\triangle P A O \sim \triangle Q B O
$$

$$
\begin{aligned}
\frac{O A}{O B} & =\frac{P A}{Q B} \\
\frac{6}{4.5} & =\frac{4}{Q B}
\end{aligned}
$$

Triangles

$$
Q B=\frac{4 \times 4.5}{6}=3 \mathrm{~cm}
$$

Thus $Q B=3 \mathrm{~cm}$
34. In $\triangle A B C$, if X and Y are points on $A B$ and $A C$ respectively such that $\frac{A X}{X B}=\frac{3}{4}, A Y=5$ and $Y C=9$, then state whether $X Y$ and $B C$ parallel or not.
Ans :
[Board Term-1 2016, 2015]
As per question we have drawn figure given below.

In this figure we have

$$
\begin{array}{ll}
& \frac{A X}{X B}=\frac{3}{4}, A Y=5 \text { and } Y C=9 \\
\text { Now } & \frac{A X}{X B}=\frac{3}{4} \text { and } \frac{A Y}{Y C}=\frac{5}{9} \\
\text { Since } & \frac{A X}{X B} \neq \frac{A Y}{Y C}
\end{array}
$$

Hence $X Y$ is not parallel to $B C$.
35. In the figure, $P Q$ is parallel to $M N$. If $\frac{K P}{P M}=\frac{4}{13}$ and $K N=20.4 \mathrm{~cm}$ then find $K Q$.

Ans :

In the given figure $P Q \| M N$, thus

$$
\frac{K P}{P M}=\frac{K Q}{Q N}
$$

(By BPT)

$$
\begin{aligned}
\frac{K P}{P M} & =\frac{K Q}{K N-K Q} \\
\frac{4}{13} & =\frac{K Q}{20.4-K Q}
\end{aligned}
$$

$$
\begin{aligned}
4 \times 20.4-4 K Q & =13 K Q \\
17 K Q & =4 \times 20.4 \\
K Q & =\frac{20.4 \times 4}{17}=4.8 \mathrm{~cm}
\end{aligned}
$$

36. In given figure $D E \| B C$. If $A D=3 c, D B=4 c \mathrm{~cm}$ and $A E=6 \mathrm{~cm}$ then find $E C$.

Ans :

[Board Term-1 2016]
In the given figure $D E \| B C$, thus

$$
\begin{aligned}
\frac{A D}{B D} & =\frac{A E}{E C} \\
\frac{3}{4} & =\frac{6}{E C} \\
E C & =8 \mathrm{~cm}
\end{aligned}
$$

37. If triangle $A B C$ is similar to triangle $D E F$ such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$ then find $E F$.
Ans :
As per given condition we have drawn the figure below.

Here we have $2 A B=D E$ and $B C=8 \mathrm{~cm}$
Since $\triangle A B C \sim \triangle D E F$, we have

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{D E}{E F} \\
\frac{A B}{8} & =\frac{2 A B}{E F} \\
E F & =2 \times 8=16 \mathrm{~cm}
\end{aligned}
$$

38. Are two triangles with equal corresponding sides always similar?
Ans:
[Board Term-1 2015]
Yes, Two triangles having equal corresponding sides are are congruent and all congruent Δs have equal angles, hence they are similar too.

TWO MARKS QUESTIONS

39. In Figure $\angle D=\angle E$ and $\frac{A D}{D B}=\frac{A E}{E C}$, prove that $\triangle B A C$ is an isosceles triangle.

Ans :
[Board 2020 Delhi Standard]
We have,

$$
\angle D=\angle E
$$

and

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

By converse of BPT, $D E \| B C$
Due to corresponding angles we have

$$
\angle A D E=\angle A B C \text { and }
$$

Chap 6

Therefore $B A C$ is an isosceles triangle.
40. In Figure, $A B C$ is an isosceles triangle right angled at C with $A C=4 \mathrm{~cm}$, Find the length of $A B$.

Ans :
[Board 2019 OD]
Since $A B C$ is an isosceles triangle right angled at C,

$$
\begin{aligned}
& A C=B C=4 \mathrm{~cm} \\
& \angle C=90^{\circ}
\end{aligned}
$$

Using Pythagoras theorem in $\triangle A B C$ we have,

$$
\begin{aligned}
A B^{2} & =B C^{2}+A C^{2} \\
& =4^{2}+4^{2}=16+16=32 \\
A B & =4 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

41. In the figure of $\triangle A B C$, the points D and E are on
the sides $C A, C B$ respectively such that $D E \| A B$, $A D=2 x, D C=x+3, B E=2 x-1 \quad$ and $\quad C E=x$. Then, find x.

OR
In the figure of $\triangle A B C, D E \| A B$. If $A D=2 x$, $D C=x+3, B E=2 x-1$ and $C E=x$, then find the value of x.

Ans :
[Board Term-1 2015, 2016]
We have $\quad \frac{C D}{A D}=\frac{C E}{B E}$

$$
\begin{aligned}
\frac{x+3}{2 x} & =\frac{x}{2 x-1} \\
5 x & =3 \text { or, } x=\frac{3}{5}
\end{aligned}
$$

Alternative Method :

In $A B C, D E \| A B$, thus

$$
\frac{C D}{C A}=\frac{C E}{C B}
$$

$$
\begin{aligned}
\frac{C D}{C A-C D} & =\frac{C E}{C B-C E} \\
\frac{C D}{A D} & =\frac{C E}{B E}
\end{aligned}
$$

$$
\frac{x+3}{2 x}=\frac{x}{2 x-1}
$$

$$
5 x=3 \text { or, } x=\frac{3}{5}
$$

42. In an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$ find the length of the altitude.
Ans :
[Board Term-1 2016]
Let $\triangle A B C$ be an equilateral triangle of side $3 \sqrt{3}$ cm and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

Now

$$
\begin{aligned}
(3 \sqrt{3})^{2} & =h^{2}+\left(\frac{3 \sqrt{3}}{2}\right)^{2} \\
27 & =h^{2}+\frac{27}{4} \\
h^{2} & =27-\frac{27}{4}=\frac{81}{4} \\
h & =\frac{9}{2}=4.5 \mathrm{~cm}
\end{aligned}
$$

43. In the given figure, $\triangle A B C \sim \triangle P Q R$. Find the value of $y+z$.

Ans :
[Board Term-1 2010]
In the given figure $\triangle A B C \sim \triangle P Q R$,
Thus $\quad \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$

$$
\begin{aligned}
& \frac{z}{3}=\frac{8}{6}=\frac{4 \sqrt{3}}{y} \\
& \frac{z}{3}=\frac{8}{6} \text { and } \frac{8}{6}=\frac{4 \sqrt{3}}{y} \\
& z=\frac{8 \times 3}{6} \text { and } y=\frac{4 \sqrt{3} \times 6}{8} \\
& z=4 \text { and } y=3 \sqrt{3}
\end{aligned}
$$

Thus

$$
y+z=3 \sqrt{3}+4
$$

44. In an equilateral triangle of side 24 cm , find the length of the altitude.
Ans :
[Board Term-1 2015]
Let $\triangle A B C$ be an equilateral triangle of side 24 cm and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

Now

$$
B D=\frac{B C}{2}=\frac{24}{2}=12 \mathrm{~cm}
$$

$A B=24 \mathrm{~cm}$

$$
\begin{aligned}
A D & =\sqrt{A B^{2}-B D^{2}} \\
& =\sqrt{(24)^{2}-(12)^{2}} \\
& =\sqrt{576-144} \\
& =\sqrt{432}=12 \sqrt{3}
\end{aligned}
$$

Thus $A D=12 \sqrt{3} \mathrm{~cm}$.
45. In $\triangle A B C, A D \perp B C$, such that $A D^{2}=B D \times C D$. Prove that $\triangle A B C$ is right angled at A.
Ans :
[Board Term-1 2015]
As per given condition we have drawn the figure

Chap 6
below.

We have

$$
\begin{aligned}
A D^{2} & =B D \times C D \\
\frac{A D}{C D} & =\frac{B D}{A D}
\end{aligned}
$$

Since $\angle D=90^{\circ}$, by SAS we have
and

$$
\triangle A D C \sim \triangle B D A
$$

Since corresponding angles of similar triangles are equal

$$
\begin{aligned}
& \angle D A C=\angle D B A \\
& \angle B A D+\angle A C D+\angle D A C+\angle D B A=180^{\circ} \\
& 2 \angle B A D+2 \angle D A C=180^{\circ} \\
& \angle B A D+\angle D A C=90^{\circ} \\
& \angle A=90^{\circ}
\end{aligned}
$$

Thus $\triangle A B C$ is right angled at A.

Triangles

46. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
[Board 2020 SQP Standard]
or
Find the altitude of an equilateral triangle when each of its side is $a \mathrm{~cm}$.
Ans :
[Board Term-1 2016]
Let $\triangle A B C$ be an equilateral triangle of side a and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

In $\triangle A B D$,

$$
a^{2}=\left(\frac{a}{2}\right)^{2}+h^{2}
$$

$$
h^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4}
$$

Thus

$$
h=\frac{\sqrt{3 a}}{2}
$$

Thus

$$
4 h^{2}=3 a^{2}
$$

Hence Proved
47. In the given triangle $P Q R, \angle Q P R=90^{\circ}, P Q=24 \mathrm{~cm}$ and $Q R=26 \mathrm{~cm}$ and in $\triangle P K R, \angle P K R=90^{\circ}$ and $K R=8 \mathrm{~cm}$, find $P K$.

Ans:

[Board Term-1 2012]
In the given triangle we have

$$
\angle Q P R=90^{\circ}
$$

Thus

$$
Q R^{2}=Q P^{2}+P R^{2}
$$

$$
\begin{aligned}
P R & =\sqrt{26^{2}-24^{2}} \\
& =\sqrt{100}=10 \mathrm{~cm}
\end{aligned}
$$

Now

$$
\angle P K R=90^{\circ}
$$

Thus

$$
\begin{aligned}
P K & =\sqrt{10^{2}-8^{2}}=\sqrt{100-64} \\
& =\sqrt{36}=6 \mathrm{~cm}
\end{aligned}
$$

48. In the given figure, G is the mid-point of the side $P Q$ of $\triangle P Q R$ and $G H \| Q R$. Prove that H is the midpoint of the side $P R$ or the triangle $P Q R$.

Ans:
[Board Term-1 2012]
Since G is the mid-point of $P Q$ we have

$$
\begin{aligned}
P G & =G Q \\
\frac{P G}{G Q} & =1
\end{aligned}
$$

We also have $G H \| Q R$, thus by BPT we get

$$
\begin{aligned}
\frac{P G}{G Q} & =\frac{P H}{H R} \\
1 & =\frac{P H}{H R} \\
P H & =H R
\end{aligned}
$$

Hence proved.
Hence, H is the mid-point of $P R$.
49. In the given figure, in a triangle $P Q R, S T \| Q R$ and $\frac{P S}{S Q}=\frac{3}{5}$ and $P R=28 \mathrm{~cm}$, find $P T$.

Ans:
[Board Term-1 2011]
We have $\quad \frac{P S}{S Q}=\frac{3}{5}$

$$
\begin{aligned}
\frac{P S}{P S+S Q} & =\frac{3}{3+5} \\
\frac{P S}{P Q} & =\frac{3}{8}
\end{aligned}
$$

We also have, $S T \| Q R$, thus by BPT we get

$$
\begin{aligned}
\frac{P S}{P Q} & =\frac{P T}{P R} \\
P T & =\frac{P S}{P Q} \times P R \\
& =\frac{3 \times 28}{8}=10.5 \mathrm{~cm}
\end{aligned}
$$

50. In the given figure, $\angle A=\angle B$ and $A D=B E$. Show that $D E \| A B$.

Ans :

[Board Term-1, 2012, set-63]
In $\triangle C A B$, we have

$$
\begin{equation*}
\angle A=\angle B \tag{1}
\end{equation*}
$$

By isosceles triangle property we have

$$
A C=C B
$$

But, we have been given

$$
\begin{equation*}
A D=B E \tag{2}
\end{equation*}
$$

Dividing equation (2) by (1) we get,

$$
\frac{C D}{A D}=\frac{C E}{B E}
$$

By converse of $B P T$,

$$
D E \| A B
$$

Hence Proved
51. In the given figure, if $A B C D$ is a trapezium in which
$A B\|C D\| E F$, then prove that $\frac{A E}{E D}=\frac{B F}{F C}$

Ans:
[Board Term-1 2012]
We draw, $A C$ intersecting $E F$ at G as shown below.

In $\triangle C A B, G F \| A B$, thus by BPT we have

$$
\begin{equation*}
\frac{A G}{C G}=\frac{B F}{F C} \tag{1}
\end{equation*}
$$

In $\triangle A D C, E G \| D C$, thus by BPT we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{A G}{C G} \tag{2}
\end{equation*}
$$

From equations (1) and (2),

$$
\frac{A E}{E D}=\frac{B F}{F C} . \quad \text { Hence Proved. }
$$

52. In a rectangle $A B C D, E$ is a point on $A B$ such that $A E=\frac{2}{3} A B$. If $A B=6 \mathrm{~km}$ and $A D=3 \mathrm{~km}$, then find $D E$.
Ans :
[Board Term-1 2016]
As per given condition we have drawn the figure below.

We have

$$
A E=\frac{2}{3} A B=\frac{2}{3} \times 6=4 \mathrm{~km}
$$

In right triangle $A D E$,
$D E^{2}=(3)^{2}+(4)^{2}=25$
Thus $\quad D E=5 \mathrm{~km}$
53. $A B C D$ is a trapezium in which $A B \| C D$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.
Ans :
[Board Term-1 2012]
As per given condition we have drawn the figure below.

In $\triangle A O B$ and $\triangle C O D, A B \| C D$,
Thus due to alternate angles

$$
\begin{array}{ll}
\angle O A B & =\angle D C O \\
\text { and } \quad \angle O B A & =\angle O D C
\end{array}
$$

By $A A$ similarity we have

$$
\Delta A O B \sim \Delta C O D
$$

For corresponding sides of similar triangles we have

$$
\begin{array}{ll}
\frac{A O}{C O}=\frac{B O}{D O} \\
\frac{A O}{B O}=\frac{C O}{D O} . & \text { Hence Proved }
\end{array}
$$

54. In the given figures, find the measure of $\angle X$.

Ans:

[Board Term-1 2012]
From given figures,

$$
\begin{aligned}
& \frac{P Q}{Z Y}=\frac{4.2}{8.4}=\frac{1}{2} \\
& \frac{P R}{Z X}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}
\end{aligned}
$$

and

$$
\frac{Q R}{Y X}=\frac{7}{14}=\frac{1}{2}
$$

Thus

$$
\frac{Q P}{Z Y}=\frac{P R}{Z X}=\frac{Q R}{Y X}
$$

By SSS criterion we have

$$
\Delta P Q R \sim \Delta Z Y X
$$

Thus

$$
\begin{aligned}
\angle X & =\angle R \\
& =180^{\circ}-\left(60^{\circ}+70^{\circ}\right)=50^{\circ}
\end{aligned}
$$

Thus $\angle X=50^{\circ}$
55. In the given figure, $P Q R$ is a triangle right angled at Q and $X Y \| Q R$. If $P Q=6 \mathrm{~cm}, P Y=4 \mathrm{~cm}$ and
$P X: X Q=1: 2$. Calculate the length of $P R$ and $Q R$.

Ans :

[Board Term-1 2012]
Since $X Y \| O R$, by BPT we have

$$
\begin{aligned}
\frac{P X}{X Q} & =\frac{P Y}{Y R} \\
\frac{1}{2} & =\frac{P Y}{P R-P Y} \\
& =\frac{4}{P R-4} \\
P R-4 & =8 \Rightarrow P R=12 \mathrm{~cm}
\end{aligned}
$$

In right $\triangle P Q R$ we have

$$
\begin{aligned}
Q R^{2} & =P R^{2}-P Q^{2} \\
& =12^{2}-6^{2}=144-36=108
\end{aligned}
$$

Thus $Q R=6 \sqrt{3} \mathrm{~cm}$
56. $A B C$ is a right triangle right angled at C. Let $B C=a$, $C A=b, A B=c P Q R, S T \| Q R$ and p be the length of perpendicular from C to $A B$. Prove that $c p=a b$.

Ans :

[Board Term-1 2012]
In the given figure $C D \perp A B$, and $C D=p$
Area,

$$
\Delta A B C=\frac{1}{2} \times \text { base } \times \text { height }
$$

Chap 6

$$
=\frac{1}{2} \times A B \times C D=\frac{1}{2} c p
$$

Also,Area of $\triangle A B C=\frac{1}{2} \times B C \times A C=\frac{1}{2} a b$

Thus

$$
\begin{aligned}
\frac{1}{2} c p & =\frac{1}{2} a b \\
c p & =a b
\end{aligned}
$$

Proved
57. In an equilateral triangle $A B C, A D$ is drawn perpendicular to $B C$ meeting $B C$ in D. Prove that $A D^{2}=3 B D^{2}$.
Ans :
[Board Term-1 2012]
In $\triangle A B D$, from Pythagoras theorem,

$$
A B^{2}=A D^{2}+B D^{2}
$$

Since $A B=B C=C A$, we get

$$
B C^{2}=A D^{2}+B D^{2}
$$

Since \perp is the median in an equilateral $\Delta, B C=2 B D$

$$
\begin{aligned}
(2 B D)^{2} & =A D^{2}+B D^{2} \\
4 B D^{2}-B D^{2} & =A D^{2} \\
3 B D^{2} & =A D^{2}
\end{aligned}
$$

58. In the figure, $P Q R S$ is a trapezium in which $P Q \| R S$. On $P Q$ and $R S$, there are points E and F respectively such that $E F$ intersects $S Q$ at G. Prove that $E Q \times G S=G Q \times F S$.

Ans:

Due to vertical opposite angle,

$$
\angle E G Q=\angle F G S
$$

Due to alternate angle,

$$
\angle E Q G=\angle F S G
$$

Thus by AA similarity we have

$$
\begin{aligned}
\Delta G E Q & \sim G F S \\
\frac{E Q}{F S} & =\frac{G Q}{G S} \\
E Q \times G S & =G Q \times F S
\end{aligned}
$$

59. A man steadily goes 10 m due east and then 24 m due north.
(1) Find the distance from the starting point.
(2) Which mathematical concept is used in this problem?
Ans:
(1) Let the initial position of the man be at O and his final position be B. The man goes to 10 m due east and then 24 m due north. Therefore, $\triangle A O B$ is a right triangle right angled at A such that $O A=10$ m and $A B=24 \mathrm{~m}$. We have shown this condition in figure below.

By Pythagoras theorem,

$$
\begin{aligned}
O B^{2} & =O A^{2}+A B^{2} \\
& =(10)^{2}+(24)^{2} \\
& =100+576=676
\end{aligned}
$$

or,

$$
O B=\sqrt{676}=26 \mathrm{~m}
$$

Hence, the man is at a distance of 26 m from the starting point.
(2) Pythagoras Theorem
60. In the given figure, $O A \times O B=O C \times O D$, show that

In $\triangle G E Q$ and $\triangle G F S$,
$\angle A=\angle C$ and $\angle B=\angle D$.

Ans :

[Board Term-1 2012]
We have $O A \times O B=O C \times O D$

$$
\frac{O A}{O D}=\frac{O C}{O B}
$$

Due to the vertically opposite angles,

$$
\angle A O D=\angle C O B
$$

Thus by SAS similarity we have

$$
\triangle A O D \sim \triangle C O B
$$

Thus $\angle A=\angle C$ and $\angle B=\angle D$. because of corresponding angles of similar triangles.
61. In the given figure, if $A B \| D C$, find the value of x.

Ans :

[Board Term-1 2012]
We know that diagonals of a trapezium divide each other proportionally. Therefore

$$
\begin{aligned}
\frac{O A}{O C} & =\frac{B O}{O D} \\
\frac{x+5}{x+3} & =\frac{x-1}{x-2} \\
(x+5)(x-2) & =(x-1)(x+3) \\
x^{2}-2 x+5 x-10 & =x^{2}+3 x-x-3 \\
x^{2}+3 x-10 & =x^{2}+2 x-3
\end{aligned}
$$

$$
\begin{aligned}
& 3 x-10=2 x-3 \\
& 3 x-2 x=10-3 \Rightarrow x=7
\end{aligned}
$$

Thus $x=7$.
62. In the given figure, $C B \| Q R$ and $C A \| P R$. If $A Q=12 \mathrm{~cm}, \quad A R=20 \mathrm{~cm}, \quad P B=C Q=15 \mathrm{~cm}$, calculate $P C$ and $B R$.

Ans :

[Board Term-1 2012]
In $\triangle P Q R, \quad C A \| P R$
By BPT similarity we have

$$
\begin{aligned}
\frac{P C}{C Q} & =\frac{R A}{A Q} \\
\frac{P C}{15} & =\frac{20}{12} \\
P C & =\frac{15 \times 20}{12}=25 \mathrm{~cm}
\end{aligned}
$$

Chap 6

In $\triangle P Q R, \quad C B \| Q R$
Thus

$$
\begin{aligned}
\frac{P C}{C Q} & =\frac{P R}{B R} \\
\frac{25}{15} & =\frac{15}{B R} \\
B R & =\frac{15 \times 15}{25}=9 \mathrm{~cm}
\end{aligned}
$$

THREE MARKS QUESTIONS

63. In Figure, in $\triangle A B C, D E \| B C$ such that $A D=2.4 \mathrm{~cm}$, $A B=3.2 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$, then what is the length of $A E$?

Ans :

[Board 2020 Delhi Basic]
We have

$$
D E \| B C
$$

By BPT,

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

$$
\begin{aligned}
\frac{2.4}{A B-A D} & =\frac{A E}{A C-A E} \\
\frac{2.4}{3.2-2.4} & =\frac{A E}{8-A E} \\
\frac{2.4}{0.8} & =\frac{A E}{8-A E} \\
3 & =\frac{A E}{8-A E} \\
\frac{3}{1+3} & =\frac{A E}{8-A E+A E} \\
\frac{3}{4} & =\frac{A E}{8} \Rightarrow A E=6 \mathrm{~cm}
\end{aligned}
$$

64. Two right triangles $A B C$ and $D B C$ are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that $A P \times P C=B P \times D P$.
Ans:
[Board 2019 OD]
Let $\triangle A B C$, and $\triangle D B C$ be right angled at A and D respectively.
As per given information in question we have drawn
the figure given below.

In $\triangle B A P$ and $\triangle C D P$ we have

$$
\angle B A P=\angle C D P=90^{\circ}
$$

and due to vertical opposite angle

$$
\angle B P A=\angle C P D
$$

By AA similarity we have

$$
\triangle B A P \sim \triangle C D P
$$

Therefore

$$
\begin{aligned}
\frac{B P}{P C} & =\frac{A P}{P D} \\
A P \times P C & =B P \times P D
\end{aligned}
$$

Hence Proved
65. In the given figure, if $\angle A C B=\angle C D A, A C=6 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$, then find the length of $A B$.

Ans :
[Board 2020 SQP Standard]
In $\triangle A B C$ and $\triangle A C D$ we have

$$
\begin{aligned}
& \angle A C B=\angle C D A \\
& \angle C A B=\angle C A D
\end{aligned}
$$

[given]
[common]
By AA similarity criterion we get

Thus

$$
\triangle A B C \sim \triangle A C D
$$

Thus

$$
\frac{A B}{A C}=\frac{B C}{C D}=\frac{A C}{A D}
$$

Now

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{A C}{A D} \\
A C^{2} & =A B \times A D \\
6^{2} & =A B \times 3 \\
A B & =\frac{36}{3}=12 \mathrm{~cm}
\end{aligned}
$$

66. If P and Q are the points on side $C A$ and $C B$
respectively of $\triangle A B C$, right angled at C, prove that $\left(A Q^{2}+B P^{2}\right)=\left(A B^{2}+P Q^{2}\right)$

Ans :

[Board 2019 Delhi]
In right angled triangles $A C Q$ and $P C B$

$$
\begin{equation*}
A Q^{2}=A C^{2}+C Q^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
B P^{2}=P C^{2}+C B^{2} \tag{2}
\end{equation*}
$$

Adding eq (1) and eq (2), we get

$$
\begin{aligned}
A Q^{2}+B P^{2} & =\left(A C^{2}+C Q^{2}\right)+\left(P C^{2}+C B^{2}\right) \\
& =\left(A C^{2}+C B^{2}\right)+\left(P C^{2}+C Q^{2}\right)
\end{aligned}
$$

Thus $\quad A Q^{2}+B P^{2}=A B^{2}+P Q^{2} \quad$ Hence Proved
67. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?
Ans :
[Board 2020 OD Basic]
Let $A B$ be the building and $C B$ be the ladder. As per information given we have drawn figure below.

Here

$$
\begin{aligned}
A B & =24 \mathrm{~m} \\
C B & =25 \mathrm{~m}
\end{aligned}
$$

and

$$
\angle C A B=90^{\circ}
$$

By Pythagoras Theorem,

$$
\begin{aligned}
C B^{2} & =A B^{2}+C A^{2} \\
\text { or, } \quad C A^{2} & =C B^{2}-A B^{2} \\
& =23^{2}-24^{2}
\end{aligned}
$$

$$
=625-576=49
$$

Thus $\quad C A=7 \mathrm{~m}$
Hence, the distance of the foot of ladder from the building is 7 m .

THREE MARKS QUESTIONS

68. In Figure, in $\triangle A B C, D E \| B C$ such that $A D=2.4 \mathrm{~cm}$, $A B=3.2 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$, then what is the length of $A E$?

Ans :
[Board 2020 Delhi Basic]
We have

$$
D E \| B C
$$

By BPT,

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

$$
\begin{aligned}
\frac{2.4}{A B-A D} & =\frac{A E}{A C-A E} \\
\frac{2.4}{3.2-2.4} & =\frac{A E}{8-A E} \\
\frac{2.4}{0.8} & =\frac{A E}{8-A E}
\end{aligned}
$$

f242
242

$$
\begin{aligned}
3 & =\frac{A E}{8-A E} \\
\frac{3}{1+3} & =\frac{A E}{8-A E+A E} \\
\frac{3}{4} & =\frac{A E}{8} \Rightarrow A E=6 \mathrm{~cm}
\end{aligned}
$$

69. Two right triangles $A B C$ and $D B C$ are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that

Chap 6
$A P \times P C=B P \times D P$.
Ans:
[Board 2019 OD]
Let $\triangle A B C$, and $\triangle D B C$ be right angled at A and D respectively.
As per given information in question we have drawn the figure given below.

In $\triangle B A P$ and $\triangle C D P$ we have

$$
\angle B A P=\angle C D P=90^{\circ}
$$

and due to vertical opposite angle

$$
\angle B P A=\angle C P D
$$

By AA similarity we have

$$
\triangle B A P \sim \triangle C D P
$$

Therefore $\quad \frac{B P}{P C}=\frac{A P}{P D}$

$$
A P \times P C=B P \times P D
$$

Hence Proved
70. In the given figure, if $\angle A C B=\angle C D A, A C=6 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$, then find the length of $A B$.

Ans :
[Board 2020 SQP Standard]
In $\triangle A B C$ and $\triangle A C D$ we have

$$
\begin{align*}
& \angle A C B=\angle C D A \tag{given}\\
& \angle C A B=\angle C A D
\end{align*}
$$

[common]
By AA similarity criterion we get

$$
\triangle A B C \sim \triangle A C D
$$

Thus

$$
\frac{A B}{A C}=\frac{B C}{C D}=\frac{A C}{A D}
$$

Now

$$
\begin{aligned}
& \frac{A B}{A C}=\frac{A C}{A D} \\
& A C^{Q}=A B \times A D
\end{aligned}
$$

Triangles

$$
\begin{aligned}
6^{2} & =A B \times 3 \\
A B & =\frac{36}{3}=12 \mathrm{~cm}
\end{aligned}
$$

71. If P and Q are the points on side $C A$ and $C B$ respectively of $\triangle A B C$, right angled at C, prove that $\left(A Q^{2}+B P^{2}\right)=\left(A B^{2}+P Q^{2}\right)$

Ans :
[Board 2019 Delhi]
In right angled triangles $A C Q$ and $P C B$

$$
\begin{align*}
& A Q^{2}=A C^{2}+C Q^{2} \tag{1}\\
& B P^{2}=P C^{2}+C B^{2} \tag{2}
\end{align*}
$$

and
Adding eq (1) and eq (2), we get

$$
\begin{aligned}
A Q^{2}+B P^{2} & =\left(A C^{2}+C Q^{2}\right)+\left(P C^{2}+C B^{2}\right) \\
& =\left(A C^{2}+C B^{2}\right)+\left(P C^{2}+C Q^{2}\right)
\end{aligned}
$$

Thus $\quad A Q^{2}+B P^{2}=A B^{2}+P Q^{2} \quad$ Hence Proved
72. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?
Ans :
[Board 2020 OD Basic]
Let $A B$ be the building and $C B$ be the ladder. As per information given we have drawn figure below.

Here
and

$$
\begin{aligned}
& A B=24 \mathrm{~m} \\
& C B=25 \mathrm{~m}
\end{aligned}
$$

$$
\angle C A B=90^{\circ}
$$

By Pythagoras Theorem,

$$
\begin{aligned}
C B^{2} & =A B^{2}+C A^{2} \\
\text { or, } \quad C A^{2} & =C B^{2}-A B^{2} \\
& =25^{2}-24^{2} \\
& =625-576=49
\end{aligned}
$$

Thus

$$
C A=7 \mathrm{~m}
$$

Hence, the distance of the foot of ladder from the building is 7 m .
73. Prove that area of the equilateral triangle described on the side of a square is half of this area of the equilateral triangle described on its diagonal.
Ans :
[Board 2018, 2015]
As per given condition we have drawn the figure below. Let a be the side of square.

By Pythagoras theorem,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =a^{2}+a^{2}=2 a^{2} \\
A C & =\sqrt{2} a
\end{aligned}
$$

Area of equilateral triangle $\triangle B C E$,

$$
\operatorname{area}(\triangle B C E)=\frac{\sqrt{3}}{4} a^{2}
$$

Area of equilateral triangle $\triangle A C F$,

$$
\operatorname{area}(\triangle A C F)=\frac{\sqrt{3}}{4}(\sqrt{2} a)^{2}=\frac{\sqrt{3}}{2} a^{2}
$$

Now, $\frac{\operatorname{area}(\triangle A C F)}{\operatorname{area}(\triangle B C E)}=2$
$\operatorname{area}(\triangle A C F)=2 \operatorname{area}(\triangle B E C)$
$\operatorname{area}(\triangle B E C)=\frac{1}{2} \operatorname{area}(\triangle A C F)$ Hence Proved.
74.
75. $\triangle A B C$ is right angled at C. If p is the length of the perpendicular from C to $A B$ and a, b, c are the lengths of the sides opposite $\angle A, \angle B$ and $\angle C$ respectively,
then prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.
Ans:
[Board Term-1 2016]
As per given condition we have drawn the figure below.

In $\triangle A C B$ and $\triangle C D B, \angle B$ is common and

$$
\angle A B C=\angle C D B=90^{\circ}
$$

Because of AA similarity we have

$$
\text { Now } \begin{array}{rlrl}
\Delta A B C & \sim \Delta C D B & \\
\frac{b}{p} & =\frac{c}{a} \\
\frac{1}{p} & =\frac{c}{a b} & & \\
\frac{1}{p^{2}} & =\frac{c^{2}}{a^{2} b^{2}} & & \left(c^{2}=a^{2}+b^{2}\right) \\
\frac{1}{p^{2}} & =\frac{a^{2}+b^{2}}{a^{2} b^{2}} & & \text { Hence Proved } \\
\frac{1}{p^{2}} & =\frac{1}{a^{2}}+\frac{1}{b^{2}} & &
\end{array}
$$

76. In $\triangle A B C, D E \| B C$. If $A D=x+2, D B=3 x+16$, $A E=x$ and $E C=3 x+5$, them find x.
Ans:
[Board Term-1 2015]
As per given condition we have drawn the figure below.

In the give figure

$$
D E \| B C
$$

By BPT we have

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{x+2}{3 x+16} & =\frac{x}{x 3+5} \\
(x+2)(3 x+5) & =x(3 x+16) \\
3 x^{2}+5 x+6 x+10 & =3 x^{2}+16 x \\
11 x+10 & =16 x \\
11 x+10 & =10 \\
5 x & =10 \Rightarrow x=2
\end{aligned}
$$

77. If in $\triangle A B C, A D$ is median and $A E \perp B C$, then prove that $A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$.
Ans :
[Board Term-1 2015]
As per given condition we have drawn the figure below.

In $\triangle A B E$, using Pythagoras theorem we have

$$
\begin{align*}
A B^{2} & =A E^{2}+B E^{2} \\
& =A D^{2}-D E^{2}+(B D-D E)^{2} \\
& =A D^{2}-D E^{2}+B D^{2}+D E^{2}-2 B D \times D E \\
& =A D^{2}+B D^{2}-2 B D \times D E \tag{1}
\end{align*}
$$

In $\triangle A E C$, we have

$$
\begin{align*}
A C^{2} & =A E^{2}+E C^{2} \\
& =\left(A D^{2}-E D^{2}\right)+(E D+D C)^{2} \\
& =A D^{2}-E D^{2}+E D^{2}+D C^{2}+2 E D \times D C \\
& =A D^{2}+C D^{2}+2 E D \times C D \\
& =A D^{2}+D C^{2}+2 D C \times D E \tag{2}
\end{align*}
$$

Adding equation (1) and (2) we have

$$
\begin{aligned}
A B^{2}+A C^{2} & =2\left(A D^{2}+B D^{2}\right) & & (B D=D C) \\
& =2 A D^{2}+2\left(\frac{1}{2} B C\right)^{2} & & \left(B D=\frac{1}{2} B C\right) \\
& =2 A D^{2}+\frac{1}{2} B C^{2} & & \text { Hence Proves }
\end{aligned}
$$

78. From an airport, two aeroplanes start at the same time. If speed of first aeroplane due North is $500 \mathrm{~km} / \mathrm{h}$ and that of other due East is $650 \mathrm{~km} / \mathrm{h}$ then find the distance between the two aeroplanes after 2 hours.
Ans :
[Board Term-1 2015]
As per given condition we have drawn the figure below.

Distance covered by first aeroplane due North after two hours,

$$
y=500 \times 2=1,000 \mathrm{~km}
$$

Distance covered by second aeroplane due East after two hours,

$$
x=650 \times 2=1,300 \mathrm{~km}
$$

Distance between two aeroplane after 2 hours

$$
\begin{aligned}
N E & =\sqrt{O N^{2}+O E^{2}} \\
& =\sqrt{(1000)^{2}+(1300)^{2}} \\
& =\sqrt{1000000+1690000} \\
& =\sqrt{2690000} \\
& =1640.12 \mathrm{~km}
\end{aligned}
$$

79. In the given figure, $A B C$ is a right angled triangle, $\angle B=90^{\circ}$. D is the mid-point of $B C$. Show that
$A C^{2}=A D^{2}+3 C D^{2}$.

Ans :
[Board Term-1 2016]
We have

$$
\begin{aligned}
& B D=C D=\frac{B C}{2} \\
& B C=2 B D
\end{aligned}
$$

Using Pythagoras theorem in the right $\triangle A B C$, we have

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =A B^{2}+(2 B D) \\
& =A B^{2}+4 B D^{2} \\
& =\left(A B^{2}+B D^{2}\right)+3 B D^{2} \\
A C^{2} & =A D^{2}+3 C D^{2}
\end{aligned}
$$

80. If the diagonals of a quadrilateral divide each other proportionally, prove that it is a trapezium.
Ans :
[Board Term-1 2011]
As per given condition we have drawn quadrilateral $A B C D$, as shown below.

We have drawn $E O \| A B$ on $D A$.
In quadrilateral $A B C D$, we have

$$
\begin{align*}
& \frac{A O}{B O}=\frac{C O}{D O} \\
& \frac{A O}{C O}=\frac{B O}{D O} \tag{1}
\end{align*}
$$

In $\triangle A B D, \quad E O \| A B$
By BPT we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{B O}{D O} \tag{2}
\end{equation*}
$$

From equation (1) and (2), we get

$$
\frac{A E}{E D}=\frac{A O}{C O}
$$

In $\triangle A D C, \quad \frac{A E}{E D}=\frac{A O}{C O}$

$$
E O \| D C
$$

(Converse of BPT)

$$
E O \| A B
$$

(Construction)

$$
A B \| D C
$$

Thus in quadrilateral $A B C D$ we have

$$
A B \quad A B \| C D
$$

Thus $A B C D$ is a trapezium.
Hence Proved
81. In the given figure, P and Q are the points on the sides $A B$ and $A C$ respectively of $\triangle A B C$, such that $A P=3.5 \mathrm{~cm}, P B=7 \mathrm{~cm}, A Q=3 \mathrm{~cm}$ and $Q C=6 \mathrm{~cm}$. If $P Q=4.5 \mathrm{~cm}$, find $B C$.

Ans :

[Board Term-1 2011]
We have redrawn the given figure as below.

We have

$$
\frac{A P}{A B}=\frac{3.5}{10.5}=\frac{1}{3}
$$

and

$$
\frac{A Q}{A C}=\frac{3}{9}=\frac{1}{3}
$$

In $\triangle A B C, \quad \frac{A P}{A B}=\frac{A Q}{A C}$ and $\angle A$ is common.
Thus due to SAS we have

$$
\begin{aligned}
\Delta A P Q & \sim \Delta A B C \\
\frac{A P}{A B} & =\frac{P Q}{B C} \\
\frac{1}{3} & =\frac{4.5}{B C} \\
B C & =13.5 \mathrm{~cm} .
\end{aligned}
$$

$$
\angle A=\angle D \quad \text { (Corresponding angles) }
$$

$$
2 \angle 1=2 \angle 2
$$

Also

$$
\angle B=\angle E \quad \text { (Corresponding angles) }
$$

$$
\frac{A P}{D Q}=\frac{A B}{D E}
$$

Hence Proved
(2) Since $\triangle A B C \sim \triangle D E F$

$$
\begin{aligned}
\angle A & =\angle D \\
\angle C & =\angle F \\
2 \angle 3 & =2 \angle 4 \\
\angle 3 & =\angle 4
\end{aligned}
$$

and

By AA similarity we have

$$
\Delta C A P \sim \Delta F D Q
$$

83. In the given figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$. Prove that $\frac{B E}{D E}=\frac{A C}{B C}$.

Ans:

[Board Term-1 2011]
As per given condition we have redrawn the figure below.

We have $D B \perp B C, D E \perp A B$ and $A C \perp B C$.
In $\triangle A B C, \angle C=90^{\circ}$, thus

$$
\angle 1+\angle 2=90^{\circ}
$$

(1) Since $\triangle A B C \sim \triangle D E F$

But we have been given,

$$
\angle 2+\angle 3=90^{\circ}
$$

Hence

$$
\angle 1=\angle 3
$$

In $\triangle A B C$ and $\triangle B D E$,

$$
\angle 1=\angle 3
$$

and

$$
\angle A C B=\angle D E B=90^{\circ}
$$

Thus by $A A$ similarity we have

$$
\triangle A B C \sim \Delta B D E
$$

Thus

$$
\frac{A C}{B C}=\frac{B E}{D E}
$$

Hence Proved
84. In the given figure, $\triangle A B C$ and $\triangle A B C$ and $\triangle D B C$ are on the same base $B C . A D$ and $B C$ intersect at O. Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$.

Ans :

[Board 2020 OD Std, 2016, 2011]
As per given condition we have redrawn the figure below. Here we have drawn $A M \perp B C$ and $D N \perp B C$.

In $\triangle A O M$ and $\triangle D O N$,

$$
\angle A O M=\angle D O N
$$

(Vertically opposite angles)

$$
\angle A M O=\angle D N O=90^{\circ} \text { (Construction) }
$$

or,
Thus $\triangle A O M \sim \triangle D O N \quad$ (By $A A$ similarity)

$$
\begin{equation*}
\frac{A O}{D O}=\frac{A M}{D N} \tag{1}
\end{equation*}
$$

$$
\text { Now, } \quad \begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)} & =\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times B C \times D N} \\
& =\frac{A M}{D N}=\frac{A O}{D O} \text { From equation (1) }
\end{aligned}
$$

85. In the given figure, two triangles $A B C$ and $D B C$ lie on the same side of $B C$ such that $P Q \| B A$ and $P R \| B D$. Prove that $Q R \| A D$.

Ans :

[Board Term-1 2011]
In $\triangle A B C$, we have $P Q \| A B$ and $P R \| B D$.
By BPT we have

$$
\begin{equation*}
\frac{B P}{P C}=\frac{A Q}{Q C} \tag{1}
\end{equation*}
$$

Again in $\triangle B C D$, we have

$$
P R \| B D
$$

By BPT we have

Chap 6

$$
\begin{aligned}
& \frac{B P}{P C}=\frac{D R}{R C} \\
& \frac{A Q}{Q C}=\frac{D R}{R C}
\end{aligned}
$$

(by BPT) ...(2)

By converse of BPT,

$$
P R \| A D
$$

Hence proved
86. The perpendicular $A D$ on the base $B C$ of a $\triangle A B C$ intersects $B C$ at D so that $D B=3 C D$. Prove that $2(A B)^{2}=2(A C)^{2}+B C^{2}$.
Ans :
[Board Term-1 2011, 2012, 2016]
As per given condition we have drawn the figure below.

Here

$$
\begin{aligned}
D B & =3 C D \\
B D & =\frac{3}{4} B C \\
D C & =\frac{1}{4} B C
\end{aligned}
$$

In $\triangle A D B$, we have

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{1}
\end{equation*}
$$

In $\triangle A D C, \quad A C^{2}=A D^{2}+C D^{2}$
Subtracting equation (2) from (1), we get

$$
A B^{2}-A C^{2}=B D^{2}-C D^{2}
$$

Since $D B=3 C D$ we get

$$
\begin{aligned}
A B^{2}-A C^{2} & =\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2} \\
& =\frac{9}{16} B C^{2}-\frac{1}{16} B C^{2}=\frac{B C^{2}}{2} \\
2\left(A B^{2}-A C^{2}\right) & =B C^{2} \\
2(A B)^{2} & =2 A C^{2}+B C^{2} \quad \text { Hence Proved }
\end{aligned}
$$

87. Prove that the sum of squares on the sides of a
rhombus is equal to sum of squares of its diagonals.
Ans :
[Board Term-1 2011]
Let, $A B C D$ is a rhombus and we know that diagonals of a rhombus bisect each other at 90°.

Now $\begin{array}{ll}A O=O C \Rightarrow A O^{2} & O C \\ B O & =O D \Rightarrow B O^{2}\end{array} \quad O D$
and

Similarly,

$$
\angle A O B=90^{\circ}
$$

$$
A B^{2}=O A^{2}+B O^{2}=x^{2}+y^{2}
$$

$$
\begin{array}{r}
C D^{2}=O C^{2}+O D^{2}=x^{2}+y^{2} \\
C B^{2}=O C^{2}+O B^{2}=x^{2}+y^{2} \\
A B^{2}+B C^{2}+C D^{2}+D A^{2}=4 x^{2}+4 y^{2} \\
=(2 x)^{2}+(2 y)^{2} \\
A B^{2}+B C^{2}+C D^{2}+A D^{2}=A C^{2}+B D^{2}
\end{array}
$$

Hence Proved
88. In the given figure, $B L$ and $C M$ are medians of $\triangle A B C$, right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$.

We have a right angled triangle $\triangle A B C$ at A where $B L$ and $C M$ are medians.
In $\triangle A B L$,

$$
\begin{aligned}
B L^{2} & =A B^{2}+A L^{2} \\
& =A B^{2}+\left(\frac{A C}{2}\right)^{2}(B L \text { is median })
\end{aligned}
$$

In $\triangle A C M$,

$$
\begin{aligned}
C M^{2} & =A C^{2}+A M^{2} \\
& =A C^{2}+\left(\frac{A B}{2}\right)^{2}(C M \text { is median })
\end{aligned}
$$

Now $\quad B L^{2}+C M^{2}=A B^{2}+A C^{2}+\frac{A C^{2}}{4}+\frac{A B^{2}}{4}$

$$
\begin{aligned}
4\left(B L^{2}+C M^{2}\right) & =5 A B^{2}+5 A C^{2} & & \\
& =5\left(A B^{2}+A C^{2}\right) & & \\
& =5 B C^{2} & & \text { Hence Proved }
\end{aligned}
$$

89. In a $\triangle A B C$, let P and Q be points on $A B$ and $A C$ respectively such that $P Q \| B C$. Prove that the median $A D$ bisects $P Q$.

Ans :

[Board Term-1 2011]
As per given condition we have drawn the figure below.

The median $A D$ intersects $P Q$ at E.
We have,

$$
P Q \| \mathrm{BE}
$$

$$
\angle A p E=\angle B \quad \text { and } \quad \angle A Q E
$$

$=\angle C$
(Corresponding angles)
Thus in $\triangle A P E$ and $\triangle A B D$ we have

$$
\begin{aligned}
& \angle A P E=\angle A B D \\
& \angle P A E=\angle B A D
\end{aligned}
$$

(common)
Thus

$$
\triangle A P E \sim \triangle A B D
$$

$$
\begin{equation*}
\frac{P E}{B D}=\frac{A E}{A D} \tag{1}
\end{equation*}
$$

Similarly, $\quad \triangle A Q E \sim \triangle A C D$
or, $\quad \frac{Q E}{C D}=\frac{A E}{A D}$
From equation (1) and (2) we have

$$
\frac{P E}{B D}=\frac{Q E}{C D}
$$

As $C D=B D$, we get

$$
\begin{aligned}
\frac{P E}{B D} & =\frac{Q E}{B D} \\
P E & =Q E
\end{aligned}
$$

Hence, $A D$ bisects $P Q$.
90. In the given figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Prove that $B C \| Q R$.

Ans :

[Board Term-1 2012]
In $\triangle P O Q, \quad A B \| P Q$
By BPT $\quad \frac{A O}{A P}=\frac{O B}{B Q}$
In $\triangle O P R, \quad A C \| P R$,
By BPT $\quad \frac{O A}{A P}=\frac{O C}{C R}$
From equations (1) and (2), we have

$$
\frac{O B}{B Q}=\frac{O C}{C R}
$$

By converse of BPT we have

$$
B C \| Q R
$$

Hence Proved
91. In the given figure, $D E \| A C$ and $D F \| A E$. Prove that $\frac{B E}{F E}=\frac{B E}{E C}$.

Ans :
[Board 2020 Delhi Std, 2012]
In $\triangle A B C, \quad D E \| A C$,
By BPT $\quad \frac{B D}{D A}=\frac{B E}{E C}$
In $\triangle A B E, \quad D F \| A E$,
By BPT $\quad \frac{B D}{D A}=\frac{B F}{F E}$
(Given)
(Given)

From (1) and (2), we have

$$
\frac{B F}{F E}=\frac{B E}{E C}
$$

92. In the given figure, $B C \| P Q$ and $B C=8 \mathrm{~cm}$, $P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm} A P=2.8 \mathrm{~cm}$ Find $C A$ and $A Q$.

Ans:

[Board Term-1 2012]
In $\triangle A B C$ and $\triangle A P Q, A B=6.5 \mathrm{~cm}, B C=8 \mathrm{~cm}$,
$P Q=4 \mathrm{~cm}$ and $A P=2.8 \mathrm{~cm}$.
We have $\quad B C \| P Q$
Due to alternate angles

$$
\angle C B A=\angle A Q P
$$

Due to vertically opposite angles,

$$
\angle B A C=\angle P A Q
$$

Due to $A A$ similarity,

$$
\begin{aligned}
\Delta A B C & \sim \Delta A Q P \\
\frac{A B}{A Q} & =\frac{B C}{Q P}=\frac{A C}{A P} \\
\frac{6.5}{A Q} & =\frac{8}{4}=\frac{A C}{A P} \\
A Q & =\frac{6.5}{2}=3.25 \mathrm{~cm} \\
A C & =2 \times 2.5=5.6 \mathrm{~cm}
\end{aligned}
$$

93. In the given figure, find the value of x in terms of a, b and c.

Ans:
[Board Term-1 2012]
In triangles $L M K$ and $P N K, \angle K$ is common and

$$
\angle M=\angle N=50^{\circ}
$$

Due to $A A$ similarity,

$$
\begin{aligned}
\Delta L M K & \sim \Delta P N K \\
\frac{L M}{P N} & =\frac{K M}{K N} \\
\frac{a}{x} & =\frac{b+c}{c} \\
x & =\frac{a c}{b+c}
\end{aligned}
$$

94. In the given figure, if $A D \perp B C$, prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

Ans:
[Board 2020 OD Standard]
In right $\triangle A D C$,

$$
\begin{equation*}
A C^{2}=A D^{2}+C D^{2} \tag{1}
\end{equation*}
$$

In right $\triangle A D B$,

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{2}
\end{equation*}
$$

Subtracting equation (1) from (2) we have

$$
\begin{aligned}
& A B^{2}-A C^{2}=B D^{2}-C D^{2} \\
& A B^{2}+C D^{2}=A C^{2}+B D^{2}
\end{aligned}
$$

95. In the given figure, $C D \| L A$ and $D E \| A C$. Find the length of $C L$, if $B E=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$.

Ans :

[Board Term-1 2012]
In $\triangle A B C, D E \| A C, B E=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$
By BPT $\quad \frac{B D}{D A}=\frac{B E}{E C}$
In $\triangle A B L$,

$$
D C \| A L
$$

By BPT

$$
\begin{equation*}
\frac{B D}{D A}=\frac{B C}{C L} \tag{2}
\end{equation*}
$$

From equations (1) and (2),

$$
\frac{B E}{E C}=\frac{B C}{C L}
$$

$$
\frac{4}{2}=\frac{6}{C L} \Rightarrow C L=3 \mathrm{~cm}
$$

96. In the given figure, $A B=A C . E$ is a point on $C B$ produced. If $A D$ is perpendicular to $B C$ and $E F$ perpendicular to $A C$, prove that $\triangle A B D$ is similar to $\triangle C E F$.

Ans :

[Board Term-1 2012]
In $\triangle A B D$ and $\triangle C E F$, we have

$$
A B=A C
$$

Thus

$$
\begin{aligned}
& \angle A B C=\angle A C B \\
& \angle A B D=\angle E C F \\
& \angle A D B=\angle E F C
\end{aligned}
$$

(each 90°)
Due to $A A$ similarity

$$
\triangle A B D \sim \triangle E C F \quad \text { Hence proved }
$$

FOUR MARKS QUESTIONS

97. In a rectangle $A B C D, P$ is any interior point. Then prove that $P A^{2}+P C^{2}=P B^{2}+P D^{2}$.
Ans:
[Board 2020 OD Basic]
As per information given we have drawn figure below.

Here P is any point in the interior of rectangle $A B C D$. We have drawn a line $M N$ through point P and parallel to $A B$ and $C D$.
We have to prove $P A^{2}+P C^{2}=P B^{2}+P D^{2}$

Since $A B\|M N, A M\| B N$ and $\angle A=90^{\circ}$, thus $A B N M$ is rectangle. $M N C D$ is also a rectangle.
Here, $P M \perp A D$ and $P N \perp B C$,

$$
\begin{equation*}
A M=B N \text { and } M D=N C \tag{1}
\end{equation*}
$$

Now, in $\triangle A M P$

$$
\begin{align*}
& P A^{2}=A M^{2}+M P^{2} \tag{2}\\
& P D^{2}=M P^{2}+M D^{2} \tag{3}\\
& P B^{2}=P N^{2}+B N^{2} \tag{4}\\
& P C^{2}=P N^{2}+N C^{2} \tag{5}
\end{align*}
$$

In $\triangle P M D$,
In $\triangle P N B$,

From equation (2) and (5) we obtain,

$$
P A^{2}+P C^{2}=A M^{2}+M P^{2}+P N^{2}+N C^{2}
$$

Using equation (1) we have

$$
\begin{aligned}
P A^{2}+P C^{2} & =B N^{2}+M P^{2}+P N^{2}+M D^{2} \\
& =\left(B N^{2}+P N^{2}\right)+\left(M P^{2}+M D^{2}\right)
\end{aligned}
$$

Using equation (3) and (4) we have

$$
P A^{2}+P C^{2}=P B^{2}+P D^{2}
$$

98. In the given figure, $D E F G$ is a square and $\angle B A C=90^{\circ}$. Show that $F G^{2}=B G \times F C$.

Ans :
[Board 2020 SQP Standard]
We have redrawn the given figure as shown below.

In $\triangle A D E$ and $\triangle G B D$, we have

$$
\angle D A E=\angle B G D
$$

[each 90°]
Due to corresponding angles we have

$$
\angle A D E=\angle G D B
$$

Thus by AA similarity criterion,

$$
\triangle A D E \sim \triangle G B D
$$

Now, in $\triangle A D E$ and $\triangle F E C$,

$$
\angle E A D=\angle C F E
$$

Due to corresponding angles we have

$$
\angle A E D=\angle F C E
$$

Thus by AA similarity criterion,

$$
\triangle A D E \sim \triangle F E C
$$

Since $\triangle A D E \sim \triangle G B D$ and $\triangle A D E \sim \triangle F E C$ we have

$$
\triangle G B D \sim \Delta F E C
$$

Thus

$$
\frac{G B}{F E}=\frac{G D}{F C}
$$

Since $D E F G$ is square, we obtain,

$$
\frac{B G}{F G}=\frac{F G}{F C}
$$

Therefore $\quad F G^{2}=B G \times F C$
Hence Proved
99. In Figure $D E F G$ is a square in a triangle $A B C$ right angled at A. Prove that
(i) $\triangle A G F \sim \triangle D B G$
(ii) $\triangle A G F \sim \triangle E F C$

Ans:
[Board 2020 Delhi, OD Basic]
We have redrawn the given figure as shown below.

Here $A B C$ is a triangle in which $\angle B A C=90^{\circ}$ and $D E F G$ is a square.
(i) In $\triangle A G F$ and $\triangle D B G$

$$
\angle G A F=\angle B D G
$$

(each $\left.90^{\circ}\right)$
Due to corresponding angles,

$$
\angle A G F=\angle G B D
$$

Thus by AA similarity criterion,

$$
\Delta A G F \sim \Delta D B G
$$

Hence Proved
(ii) In $\triangle A G F$ and $\triangle E F C$,

$$
\angle G A F=\angle C E F
$$

(each 90°)
Due to corresponding angles,

$$
\angle A F G=\angle F C E
$$

Thus by AA similarity criterion,

$$
\Delta A G F \sim \triangle E F C
$$

Hence Proved
100.In Figure, if $\triangle A B C \sim \triangle D E F$ and their sides of lengths (in cm) are marked along them, then find the lengths of sides of each triangle.

Ans:

[Board 2020 OD Standard]

Since $\triangle A B C \sim \triangle D E F$, we have

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{D E}{E F} \\
\frac{2 x-1}{2 x+2} & =\frac{18}{3 x+9} \\
(2 x-1)(3 x+9) & =18(2 x+2) \\
(2 x-1)(x+3) & =6(2 x+2) \\
2 x^{2}-x+6 x-3 & =12 x+12 \\
2 x^{2}+5 x-12 x-15 & =0 \\
2 x^{2}-7 x-15 & =0 \\
2 x^{2}-10 x+3 x-15 & =0 \\
2 x(x-5)+3(x-5) & =0 \\
(x-5)(2 x+3) & =0 \Rightarrow x=5 \text { or } x=\frac{-3}{2}
\end{aligned}
$$

But $x=\frac{-3}{2}$ is not possible, thus $x=5$.
Now in $\triangle A B C$, we get

$$
\begin{aligned}
& A B=2 x-1=2 \times 5-1=9 \\
& B C=2 x+2=2 \times 5+2=12 \\
& A C=3 x=3 \times 5=15
\end{aligned}
$$

and in $\triangle D E F$, we get

$$
\begin{aligned}
& D E=18 \\
& E F=3 x+9=3 \times 5+9=24 \\
& D E=6 x=6 \times 5=30
\end{aligned}
$$

101.In Figure , $\angle A C B=90^{\circ}$ and $C D \perp A B$, prove that $C D^{2}=B D \times A D$.

Ans:
[Board 2019 Delhi]
In $\triangle A C B$ we have

$$
\angle A C B=90^{\circ}
$$

and

$$
C D \perp A B
$$

Thus

$$
\begin{equation*}
A B^{2}=C A^{2}+C B^{2} \tag{1}
\end{equation*}
$$

In $\triangle C A D, \angle A D C=90^{\circ}$, thus we have

$$
\begin{equation*}
C A^{2}=C D^{2}+A D^{2} \tag{2}
\end{equation*}
$$

and in $\triangle C D B, \angle C D B=90^{\circ}$, thus we have

$$
\begin{equation*}
C B^{2}=C D^{2}+B D^{2} \tag{3}
\end{equation*}
$$

Adding equation (2) and (3), we get

$$
C A^{2}+C B^{2}=2 C D^{2}+A D^{2}+B D^{2}
$$

Substituting $A B^{2}$ from equation (1) we have

$$
\begin{gathered}
A B^{2}=2 C D^{2}+A D^{2}+B D^{2} \\
A B^{2}-A D^{2}=B D^{2}+2 C D^{2} \\
(A B+A D)(A B-A D)=B D^{2}+2 C D^{2} \\
(A B+A D) B D-B D^{2}=2 C D^{2} \\
B D[(A B+A D)-B D]=2 C D^{2} \\
B D[A D+(A B-B D)]=2 C D^{2} \\
B D[A D+A D]=2 C D^{2}
\end{gathered}
$$

$$
\begin{aligned}
B D \times 2 A D & =2 C D^{2} \\
C D^{2} & =B D \times A D \quad \text { Hence Proved }
\end{aligned}
$$

102. $\triangle P Q R$ is right angled at $Q . Q X \perp P R, X Y \perp R Q$ and $X Z \perp P Q$ are drawn. Prove that $X Z^{2}=P Z \times Z Q$.

Ans:

[Board Term-1 2015]
We have redrawn the given figure as below.

It may be easily seen that $R Q \perp P Q$ and $X Z \perp P Q$ or $X Z \| Y Q$.

Similarly $\quad X Y \| \mathrm{ZQ}$
Since $\angle P Q R=90^{\circ}$, thus $X Y Q Z$ is a rectangle.
In $\triangle X Z Q$,

$$
\begin{equation*}
\angle 1+\angle 2=90^{\circ} \tag{1}
\end{equation*}
$$

and in $\triangle P Z X, \quad \angle 3+\angle 4=90^{\circ}$
$X Q \perp P R$ or, $\quad \angle 2+\angle 3=90^{\circ}$
From eq. (1) and (3), $\angle 1=\angle 3$
From eq. (2) and (3), $\quad \angle 2=\angle 4$
Due to $A A$ similarity,

$$
\begin{aligned}
\Delta P Z X & \sim \Delta X Z Q \\
\frac{P Z}{X Z} & =\frac{X Z}{Z Q} \\
X Z^{2} & =P Z \times Z Q
\end{aligned}
$$

Hence proved
103.In $\triangle A B C$, the mid-points of sides $B C, C A$ and $A B$ are D, E and F respectively. Find ratio of $\operatorname{ar}(\triangle D E F)$ to $\operatorname{ar}(\triangle A B C$.)
Ans :
[Board Term-1 2015]
As per given condition we have given the figure below. Here F, E and D are the mid-points of $A B, A C$ and $B C$ respectively.

Hence, $F E\|B C, D E\| A B$ and $D F \| A C$
By mid-point theorem,
If

$$
D E \| B A \text { then } D E \| B F
$$

and if $\quad F E \| B C$ then $F E \| B D$
Therefore $F E D B$ is a parallelogram in which $D F$ is diagonal and a diagonal of parallelogram divides it into two equal Areas.
Hence $\quad \operatorname{ar}(\triangle B D F)=\operatorname{ar}(\triangle D E F)$
Similarly $\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle D E F)$

$$
\begin{align*}
& (\triangle A F E)=\operatorname{ar}(\triangle D E F) \tag{3}\\
& (\triangle D E F)=\operatorname{ar}(\triangle D E F)
\end{align*}
$$

Adding equation (1), (2), (3) and (4), we have

$$
\begin{aligned}
& \operatorname{ar}(\triangle B D F)+\operatorname{ar}(\triangle C D E)+\operatorname{ar}(\triangle A F E)+\operatorname{ar}(\triangle D E F) \\
&=4 \operatorname{ar}(\triangle D E F) \\
& \operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle D E F) \\
& \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{4}
\end{aligned}
$$

104.In the figure, $\angle B E D=\angle B D E$ and E is the midpoint of $B C$. Prove that $\frac{A F}{C F}=\frac{A D}{B E}$.

Ans:

We have redrawn the given figure as below. Here $C G \| F D$.

We have $\quad \angle B E D=\angle B D E$
Since E is mid-point of $B C$,

$$
\begin{equation*}
B E=B D=E C \tag{1}
\end{equation*}
$$

In $\triangle B C G, \quad D E \| F G$
From (1) we have

$$
\begin{aligned}
\frac{B D}{D G} & =\frac{B E}{E C}=1 \\
B D & =D G=E C=B E
\end{aligned}
$$

In $\triangle A D F, \quad C G \| F D$
By BPT $\quad \frac{A G}{G D}=\frac{A C}{C F}$

$$
\begin{aligned}
\frac{A G+G D}{G D} & =\frac{A F+C F}{C F} \\
\frac{A D}{G D} & =\frac{A F}{C F} \\
\frac{A F}{C F} & =\frac{A D}{B E}
\end{aligned}
$$

105.In the right triangle, B is a point on $A C$ such that $A B+A D=B C+C D$. If $A B=x, B C=h$ and $C D=d$, then find x (in term of h and d).
Ans :
[Board Term-1 2015]

We have redrawn the given figure as below.

We have $A B+A D=B C+C D$

$$
\begin{aligned}
& A D=B C+C D-A B \\
& A D=h+d-x
\end{aligned}
$$

In right $\triangle A C D$, we have

$$
\begin{aligned}
& A D^{2}=A C^{2}+D C^{2} \\
&(h+d-x)^{2}=(x+h)^{2}+d^{2} \\
&(h+d-x)^{2}-(x+h)^{2}=d^{2} \\
&(h+d-x-x-h)(h+d-x+x+h)=d^{2} \\
&(d-2 x)(2 h+d)=d^{2} \\
& 2 h d+d^{2}-4 h x-2 x d=d^{2} \\
& 2 h d=4 h x+2 x d \\
&=2(2 h+d) x
\end{aligned}
$$

or,

$$
x=\frac{h d}{2 h+d}
$$

106.In $\triangle A B C, A D$ is a median and O is any point on $A D$. $B O$ and $C O$ on producing meet $A C$ and $A B$ at E and F respectively. Now $A D$ is produced to X such that $O D=D X$ as shown in figure.
Prove that :
(1) $E F \| B C$
(2) $A O: A X=A F: A B$

Ans :

[Board Term-1 2015]
Since $B C$ and $O X$ bisect each other, $B X C O$ is a parallelogram. Therefore $B E \| X C$ and $B X \| C F$.
In $\triangle A B X$, by BPT we get,

$$
\begin{equation*}
\frac{A F}{F B}=\frac{A O}{O X} \tag{1}
\end{equation*}
$$

In $\triangle A X C, \quad \frac{A E}{E C}=\frac{A O}{O X}$
From (1) and (2) we get

$$
\frac{A F}{F B}=\frac{A E}{E C}
$$

By converse of BPT we have

$$
E F \| B C
$$

From (1) we get $\frac{O X}{O A}=\frac{F B}{A F}$

$$
\begin{aligned}
\frac{O X+O A}{O A} & =\frac{F B+A F}{A F} \\
\frac{A X}{O A} & =\frac{A B}{A F} \\
\frac{A O}{A X} & =\frac{A F}{A B}
\end{aligned}
$$

Thus $A O: A X=A F: A B$
Hence Proved
107. $A B C D$ is a rhombus whose diagonal $A C$ makes an angle α with $A B$. If $\cos \alpha=\frac{2}{3}$ and $O B=3 \mathrm{~cm}$, find the length of its diagonals $A C$ and $B D$.

Ans :
[Board Term-1 2013]

We have

$$
\cos \alpha=\frac{2}{3} \text { and } O B=3 \mathrm{~cm}
$$

In $\triangle A O B, \quad \cos \alpha=\frac{2}{3}=\frac{A O}{A B}$
Let $O A=2 x$ then $A B=3 x$
Now in right angled triangle $\triangle A O B$ we have

$$
\begin{aligned}
A B^{2} & =A O^{2}+O B^{2} \\
(3 x)^{2} & =(2 x)^{2}+(3)^{2} \\
9 x^{2} & =4 x^{2}+9 \\
5 x^{2} & =9 \\
x & =\sqrt{\frac{9}{5}}=\frac{3}{\sqrt{5}}
\end{aligned}
$$

Hence,

$$
O A=2 x=2\left(\frac{3}{\sqrt{5}}\right)=\frac{6}{\sqrt{5}} \mathrm{~cm}
$$

and

$$
A B=3 x=3\left(\frac{3}{\sqrt{5}}\right)=\frac{9}{\sqrt{5}} \mathrm{~cm}
$$

Diagonal

$$
B D=2 \times O B=2 \times 3=6 \mathrm{~cm}
$$

and

$$
\begin{aligned}
A C & =2 A O \\
& =2 \times \frac{6}{\sqrt{5}}=\frac{12}{\sqrt{5}} \mathrm{~cm}
\end{aligned}
$$

108. In $\triangle A B C, A D$ is the median to $B C$ and in $\triangle P Q R, P M$ is the median to $Q R$. If $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}$. Prove that $\triangle A B C \sim \triangle P Q R$.
Ans :
[Board Term-1 2012, 2013]
As per given condition we have drawn the figure below.

In $\triangle A B C A D$ is the median, therefore

$$
B C=2 B D
$$

and in $\triangle P Q R, P M$ is the median,

Given,

$$
Q R=2 Q M
$$

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B C}{Q R}
$$

or,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 B D}{2 Q M}
$$

In triangles $A B D$ and $P Q M$,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B D}{Q M}
$$

By SSS similarity we have

$$
\triangle A B D \sim \triangle P Q M
$$

By CPST we have

$$
\angle B=\angle Q,
$$

In $\triangle A B C$ and $\triangle P Q R$,

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

By SAS similarity we have

$$
\angle B=\angle Q
$$

Thus $\triangle A B C \sim \triangle P Q R$. Hence Proved.
109.In $\triangle A B C$, if $\angle A D E=\angle B$, then prove that $\triangle A D E \sim \triangle A B C$.
Also, if $A D=7.6 \mathrm{~cm}, A E=7.2 \mathrm{~cm}, B E=4.2 \mathrm{~cm}$ and $B C=8.4 \mathrm{~cm}$, then find $D E$.

Ans:
[Board Term-1 2015]
In $\triangle A D E$ and $\triangle A B C, \angle A$ is common.
and we have $\angle A D E=\angle A B C$
Due to $A A$ similarity,

$$
\begin{aligned}
\Delta A D E & \sim \Delta A B C \\
\frac{A D}{A B} & =\frac{D E}{B C} \\
\frac{A D}{A E+B E} & =\frac{D E}{B C} \\
\frac{7.6}{4.2+4.2} & =\frac{D E}{8.4} \\
D E & =\frac{7.6 \times 8.4}{11.4}=5.6 \mathrm{~cm}
\end{aligned}
$$

110.In the following figure, $\triangle F E C \cong \triangle G B D$ and $\angle 1=\angle 2$. Prove that $\triangle A D E \cong \triangle A B C$.

Ans :
[Board Term-1 2012]
Since

$$
\triangle F E C \cong \triangle G B D
$$

$$
\begin{equation*}
E C=B D \tag{1}
\end{equation*}
$$

Since $\angle 1=\angle 2$, using isosceles triangle property

$$
\begin{equation*}
A E=A D \tag{2}
\end{equation*}
$$

From equation (1) and (2), we have

$$
\begin{aligned}
& \frac{A E}{E C}=\frac{A D}{B D} \\
& D E \| B C
\end{aligned}
$$

(Converse of BPT)
Due to corresponding angles we have

$$
\angle 1=\angle 3 \text { and } \angle 2=
$$

Thus in $\triangle A D E$ and $\triangle A B C$,

$$
\begin{aligned}
& \angle A=\angle A \\
& \angle 1=\angle 3 \\
& \angle 2=\angle 4
\end{aligned}
$$

Sy by $A A A$ criterion of similarity,

$$
\triangle A D E \sim \triangle A B C
$$

Hence proved
111. In the given figure, D and E trisect $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

Ans:
[Board Term-1 2013]
As per given condition we have drawn the figure below.

Since D and E trisect $B C$, let $B D=D E=E C$ be x.
Then

$$
B E=2 x \text { and } B C=3 x
$$

In $\triangle A B E$,

$$
\begin{equation*}
A E^{2}=A B^{2}+B E^{2}=A B^{2}+4 x^{2} \tag{1}
\end{equation*}
$$

In $\triangle A B C, \quad A C^{2}=A B^{2}+B C^{2}=A B^{2}+9 x^{2}$
In $\triangle A D B, \quad A D^{2}=A B^{2}+B D^{2}=A B^{2}+x^{2}$
Multiplying (2) by 3 and (3) by 5 and adding we have

$$
\begin{aligned}
3 A C^{2}+5 A D^{2} & =3\left(A B^{2}+9 x^{2}\right)+\left(A B^{2}+x^{2}\right) \\
& =3 A B^{2}+27 x^{2}+5 A B^{2}+5 x^{2} \\
& =8 A B^{2}+32 x^{2} \\
& =8\left(A B^{2}+4 x^{2}\right)=8 A E^{2}
\end{aligned}
$$

Thus $3 A C^{2}+5 A D^{2}=8 A E^{2}$
Hence Proved
112. Let $A B C$ be a triangle D and E be two points on side $A B$ such that $A D=B E$. If $D P \| B C$ and $E Q \| A C$, then prove that $P Q \| A B$.
Ans:
[Board Term-1 2012]
As per given condition we have drawn the figure below.

$$
\begin{array}{ll}
\text { In } \triangle A B C, & D P \| B C \\
\text { By BPT we have } & \frac{A D}{D B}=\frac{A P}{P C},
\end{array}
$$

$$
\begin{equation*}
\frac{B Q}{Q C}=\frac{B E}{E A} \tag{2}
\end{equation*}
$$

From figure,

$$
\begin{aligned}
E A & =A D+D E \\
& =B E+E D \quad(B E=A D) \\
& =B D
\end{aligned}
$$

Therefore equation (2) becomes,

$$
\begin{equation*}
\frac{B Q}{Q C}=\frac{A D}{B D} \tag{3}
\end{equation*}
$$

From (1) and (3), we have

$$
\frac{A P}{P C}=\frac{B Q}{Q C}
$$

By converse of $B P T$,

$$
P Q \| A B
$$

Hence Proved
113.Prove that in a right triangle, the square of the hypotenuse is equal to sum of squares of other two sides. [Board 2020 Delhi Basic, 2019 Delhi, 2018] or
Prove that in a right triangle, the square of the hypotenuse is equal to sum of squares of other two sides. Using the above result, prove that, in rhombus $A B C D, 4 A B^{2}=A C^{2}+B D^{2}$.
Ans :
[Board Term -2 SQP 2017, 2015]
(1) As per given condition we have drawn the figure below. Here $A B \perp B C$.

We have drawn $B E \perp A C$

In $\triangle A E B$ and $\triangle A B C \angle A$ common and

$$
\angle E=\angle B
$$

(each $\left.90^{\circ}\right)$
By $A A$ similarity we have

$$
\begin{aligned}
\Delta A E B & \sim \triangle A B C \\
\frac{A E}{A B} & =\frac{A B}{A C} \\
A B^{2} & =A E \times A C
\end{aligned}
$$

Now, in $\triangle C E B$ and $\triangle C B A, \angle C$ is common and

$$
\angle E=\angle B
$$

(each $\left.90^{\circ}\right)$
By $A A$ similarity we have

$$
\begin{align*}
\Delta A E B & \sim \triangle C B A \\
\frac{C E}{B C} & =\frac{B C}{A C} \\
B C^{2} & =C E \times A C \tag{2}
\end{align*}
$$

Adding equation (1) and (2) we have

$$
\begin{aligned}
A B^{2}+B C^{2} & =A E \times A C+C E \times A C \\
& =A C(A E+C E) \\
& =A C \times A C
\end{aligned}
$$

Thus $\quad A B^{2}+B C^{2}=A C^{2} \quad$ Hence proved
(2) As per given condition we have drawn the figure below. Here $A B C D$ is a rhombus.

We have drawn diagonal $A C$ and $B D$.
and

$$
\begin{aligned}
& A O=O C=\frac{1}{2} A C \\
& B O=O D=\frac{1}{2} B D \\
& A C \perp B D
\end{aligned}
$$

Since diagonal of rhombus bisect each other at right angle,

$$
\begin{aligned}
\angle A O B & =90^{\circ} \\
A B^{2} & =O A^{2}+O B^{2} \\
& =\left(\frac{A C}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2} \\
& =\frac{A C^{2}}{4}+\frac{B D^{2}}{4}
\end{aligned}
$$

or

$$
4 A B^{2}=A C^{2}+B D^{2} \quad \text { Hence proved }
$$

114.Vertical angles of two isosceles triangles are equal. If their areas are in the ratio $16: 25$, then find the ratio
of their altitudes drawn from vertex to the opposite side.

Ans :

[Board Term-1 2015]
As per given condition we have drawn the figure below.

Here $\quad \angle A=\angle P \angle B=\angle C$ and $\angle Q=\angle R$
Let $\angle A=\angle P$ be x.
In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$

$$
\begin{align*}
& x+\angle B+\angle B=180^{\circ} \quad(\angle B=\angle C) \\
& 2 \angle B=180^{\circ}-x \\
& \angle B=\frac{180^{\circ}-x}{2} \tag{1}
\end{align*}
$$

Now, in $\triangle P Q R$,

$$
\begin{aligned}
\angle P+\angle Q+\angle R & =180^{\circ} \quad(\angle Q=\angle R) \\
x^{2}+\angle Q+\angle Q & =180^{\circ} \\
2 \angle Q & =180^{\circ}-x \\
\angle Q & =\frac{180^{\circ}-x}{2}
\end{aligned}
$$

In $\triangle A B C$ and $\triangle P Q R$,

$$
\begin{array}{rrr}
\angle A & =\angle P & {[\text { Given }]} \\
\angle B & =\angle Q & {[\text { From eq. (1) and (2)] }}
\end{array}
$$

Due to $A A$ similarity,

$$
\Delta A B C \sim \Delta P Q R
$$

Now $\quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P E^{2}}$

$$
\begin{aligned}
\frac{16}{25} & =\frac{A D^{2}}{P E^{2}} \\
\frac{4}{5} & =\frac{A D}{P E}
\end{aligned}
$$

Thus

$$
\frac{A D}{P E}=\frac{4}{5}
$$

115.In the figure, $A B C$ is a right triangle, right angled at $B . A D$ and $C E$ are two medians drawn from A and C respectively. If $A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2} \mathrm{~cm}$, find the length of $C E$.

Ans:
[Board Term-1 2013]
We have redrawn the given figure as below.

Here in $\triangle A B C, \angle B=90^{\circ}, A D$ and $C E$ are two medians.
Also we have $A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2}$.
By Pythagoras theorem we get

$$
\begin{equation*}
A C^{2}=A B^{2}+B C^{2}=(5)^{2}=25 \tag{1}
\end{equation*}
$$

In $\triangle A B D, \quad A D^{2}=A B^{2}+B D^{2}$

$$
\begin{align*}
\left(\frac{3 \sqrt{5}}{2}\right)^{2} & =A B^{2}+\frac{B C^{2}}{4} \\
\frac{45}{4} & =A B^{2}+\frac{B C^{2}}{4} \tag{2}
\end{align*}
$$

In $\triangle E B C, \quad C E^{2}=B C^{2}+\frac{A B^{2}}{4}$
Subtracting equation (2) from equation (1),

$$
\frac{3 B C^{2}}{4}=25-\frac{45}{4}=\frac{55}{4}
$$

$$
\begin{equation*}
B C^{2}=\frac{55}{3} \tag{4}
\end{equation*}
$$

From equation (2) we have

$$
\begin{aligned}
A B^{2}+\frac{55}{12} & =\frac{45}{4} \\
A B^{2} & =\frac{45}{4}-\frac{55}{12}=\frac{20}{3}
\end{aligned}
$$

From equation (3) we get

Thus

$$
C E^{2}=\frac{55}{3}+\frac{20}{3 \times 4}=\frac{240}{12}=20
$$

$$
C E=\sqrt{20}=2 \sqrt{5} \mathrm{~cm}
$$

116.If a line drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. Prove it. Ans:
[Board 2019 OD, SQP 2020 STD, 2012]
A triangle $A B C$ is given in which $D E \| B C$. We have drawn $D N \perp A E$ and $E M \perp A D$ as shown below. We have joined $B E$ and $C D$.

In $\triangle A D E$,

$$
\begin{equation*}
\operatorname{area}(\triangle A D E)=\frac{1}{2} \times A E \times D N \tag{1}
\end{equation*}
$$

In $\triangle D E C$,

$$
\begin{equation*}
\operatorname{area}(\triangle D C E)=\frac{1}{2} \times C E \times D N \tag{2}
\end{equation*}
$$

Dividing equation (1) by (2) we have,

$$
\begin{align*}
\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E C)} & =\frac{\frac{1}{2} \times A E \times D N}{\frac{1}{2} \times C E \times D N} \\
\text { or, } \quad & \frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E C)} \tag{3}
\end{align*}=\frac{A E}{C E}, ~ l
$$

Now in $\triangle A D E$,

$$
\begin{equation*}
\operatorname{area}(\triangle A D E)=\frac{1}{2} \times A D \times E M \tag{4}
\end{equation*}
$$

and in $\triangle D E B$,

$$
\begin{equation*}
\operatorname{area}(\triangle D E B)=\frac{1}{2} \times E M \times B D \tag{5}
\end{equation*}
$$

Dividing eqn. (4) by eqn. (5),

$$
\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E B)}=\frac{\frac{1}{2} \times A D \times E M}{\frac{1}{2} \times B D \times E M}
$$

or, $\quad \frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E B)}=\frac{A D}{B D}$
Since $\triangle D E B$ and $\triangle D E C$ lie on the same base $D E$ and between two parallel lines $D E$ and $B C$.

$$
\operatorname{area}(\triangle D E B)=\operatorname{area}(\triangle D E C)
$$

From equation (3) we have

$$
\begin{equation*}
\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E B)}=\frac{A E}{C E} \tag{7}
\end{equation*}
$$

From equations (6) and (7) we get

$$
\frac{A E}{C E}=\frac{A D}{B D} . \quad \text { Hence proved }
$$

117. In a trapezium $A B C D, A B \| D C$ and $D C=2 A B$. $E F=A B$, where E and F lies on $B C$ and $A D$ respectively such that $\frac{B E}{E C}=\frac{4}{3}$ diagonal $D B$ intersects $E F$ at G. Prove that, $7 E F=11 A B$.
Ans:
[Board Term-1 2012]
As per given condition we have drawn the figure below.

In trapezium $A B C D$,

$$
A B \| D C \text { and } D C=2 A B
$$

$$
\text { Also, } \quad \frac{B E}{E C}=\frac{4}{3}
$$

Thus

$$
E F\|A B\| C D
$$

$$
\frac{A F}{F D}=\frac{B E}{E C}=\frac{4}{3}
$$

In $\triangle B G E$ and $\triangle B D C, \angle B$ is common and due to corresponding angles,

$$
\angle B E G=\angle B C D
$$

Due to $A A$ similarity we get

$$
\begin{align*}
\Delta B G E & \sim \Delta B D C \\
\frac{E G}{C D} & =\frac{B E}{B C} \tag{1}\\
\frac{B E}{E C} & =\frac{4}{3} \\
\frac{B E}{B E+E C} & =\frac{4}{4+3}=\frac{4}{7} \\
\frac{B E}{B C} & =\frac{4}{7}
\end{align*}
$$

From (1) and (2) we have

$$
\begin{align*}
\frac{E G}{C D} & =\frac{4}{7} \\
E G & =\frac{4}{7} C D \tag{3}
\end{align*}
$$

Similarly, $\quad \triangle D G F \sim \Delta D B A$

$$
\begin{aligned}
& \frac{D F}{D A}=\frac{F G}{A B} \\
& \frac{F G}{A B}=\frac{3}{7} \\
& F G=\frac{3}{7} A B \\
& \quad\left[\frac{A F}{A D}=\frac{4}{7}=\frac{B E}{B C} \Rightarrow \frac{E C}{B C}=\frac{3}{7}=\frac{D E}{D A}\right]
\end{aligned}
$$

Adding equation (3) and (4) we have

$$
\begin{aligned}
E G+F G & =\frac{4}{7} D C+\frac{3}{7} A B \\
E F & =\frac{4}{7} \times(2 A B)+\frac{3}{7} A B \\
& =\frac{8}{7} A B+\frac{3}{7} A B=\frac{11}{7} A B \\
7 E F & =11 A B \quad \text { Hence proved. }
\end{aligned}
$$

118. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Ans :

[Board Term-1 2012]
It is given that in $\triangle A B C$ and $\triangle P Q R, A D$ and $P M$
are their medians,
such that $\quad \frac{A B}{P Q}=\frac{A D}{P M}=\frac{A C}{P R}$
We have produce $A D$ to E such that $A D=D E$ and produce $P M$ to N such that $P M=M N$. We join $C E$ and $R N$. As per given condition we have drawn the figure below.

In $\triangle A B D$ and $\triangle E D C$,

$$
\begin{align*}
A D & =D E & (\text { By construction }) \\
\angle A D B & =\angle E D C & (\mathrm{VOA}) \tag{VOA}\\
B D & =D C & (A D \text { is a median })
\end{align*}
$$

By SAS congruency

$$
\begin{aligned}
\Delta A B D & \cong \Delta E D C \\
A B & =C E
\end{aligned}
$$

(By CPCT)
Similarly, $\quad P Q=R N$ and $\angle A=\angle 2$

$$
\begin{aligned}
& \frac{A B}{P Q}=\frac{A D}{P M}=\frac{A C}{P R} \\
& \frac{C E}{R N}=\frac{2 A D}{2 P M}=\frac{A C}{P R} \\
& \frac{C E}{R N}=\frac{A E}{P N}=\frac{A C}{P R}
\end{aligned}
$$

By SSS similarity, we have

$$
\begin{aligned}
\triangle A E C & \sim \triangle P N R \\
\angle 3 & =\angle 4 \\
\angle 1 & =\angle 2 \\
\angle 1+\angle 3 & =\angle 2+\angle 4
\end{aligned}
$$

By SAS similarity, we have
$\triangle A B C \sim \triangle P Q R$
Hence Proved
119.In $\triangle A B C, A D \perp B C$ and point D lies on $B C$ such that $2 D B=3 C D$. Prove that $5 A B^{2}=5 A C^{2}+B C^{2}$.
Ans:
[Board Term-1 2015]
It is given in a triangle $\triangle A B C, A D \perp B C$ and point D lies on $B C$ such that $2 D B=3 C D$.
As per given condition we have drawn the figure below.

Since

$$
2 D B=3 C D
$$

$$
\frac{D B}{C D}=\frac{3}{2}
$$

Let $D B$ be $3 x$, then $C D$ will be $2 x$ so $B C=5 x$.
Since $\angle D=90^{\circ}$ in $\triangle A D B$, we have

$$
\begin{align*}
A B^{2} & =A D^{2}+D B^{2}=A D^{2}+(3 x)^{2} \\
& =A D^{2}+9 x^{2} \\
5 A B^{2} & =5 A D^{2}+45 x^{2} \\
5 A D^{2} & =5 A B^{2}-45 x^{2} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
A C^{2} & =A D^{2}+C D^{2}=A D^{2}+(2 x)^{2} \\
& =A D^{2}+4 x^{2} \\
5 A C^{2} & =5 A D^{2}+20 x^{2} \\
5 A D^{2} & =5 A C^{2}-20 x^{2} \tag{2}
\end{align*}
$$

Comparing equation (1) and (2) we have

$$
\begin{aligned}
5 A B^{2}-45 x^{2} & =5 A C^{2}-20 x^{2} \\
5 A B^{2} & =5 A C^{2}-20 x^{2}+45 x^{2} \\
& =5 A C^{2}+25 x^{2} \\
& =5 A C^{2}+(5 x)^{2} \\
& =5 A C^{2}+B C^{2} \quad[B C=5 x]
\end{aligned}
$$

Therefore

$$
5 A B^{2}=5 A C^{2}+B C^{2} \quad \text { Hence proved }
$$

120.In a right triangle $A B C$, right angled at $C . P$ and Q are points of the sides $C A$ and $C B$ respectively, which
divide these sides in the ratio $2: 1$.
Prove that: $\quad 9 A Q^{2}=9 A C^{2}+4 B C^{2}$

$$
\begin{aligned}
9 B P^{2} & =9 B C^{2}+4 A C^{2} \\
9\left(A Q^{2}+B P^{2}\right) & =13 A B^{2}
\end{aligned}
$$

Ans :
As per given condition we have drawn the figure below.

Since P divides $A C$ in the ratio $2: 1$

$$
C P=\frac{2}{3} A C
$$

and Q divides $C B$ in the ratio $2: 1$

$$
\begin{align*}
Q C & =\frac{2}{3} B C \\
A Q^{2} & =Q C^{2}+A C^{2} \\
& =\frac{4}{9} B C^{2}+A C^{2} \tag{1}
\end{align*}
$$

or, $\quad 9 A Q^{2}=4 B C^{2}+9 A C^{2}$
Similarly, we get

$$
\begin{equation*}
9 B P^{2}=9 B C^{2}+4 A C^{2} \tag{2}
\end{equation*}
$$

Adding equation (1) and (2), we get

$$
9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}
$$

121.Find the length of the second diagonal of a rhombus, whose side is 5 cm and one of the diagonals is 6 cm .
Ans :
As per given condition we have drawn the figure
below.

We have $A B=B C=C D=A D=5 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$
Since $A O=O C, \quad A O=3 \mathrm{~cm}$
Here $\triangle A O B$ is right angled triangle as diagonals of rhombus intersect at right angle.
By Pythagoras theorem,

$$
O B=4 \mathrm{~cm}
$$

Since $D O=O B, B D=8 \mathrm{~cm}$, length of the other diagonal $=2(B O)$ where $B O=4 \mathrm{~cm}$

Hence

$$
B D=2 \times B O=2 \times 4=8 \mathrm{~cm}
$$

122. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Ans:

As per given condition we have drawn the figure below.

In triangle sum of squares of any two sides is equal to twice the square of half of the third side, together with twice the square of median bisecting it.
If $A D$ is the median,

$$
A B^{2}+A C^{2}=2\left\{A D^{2}+\frac{B C^{2}}{4}\right\}
$$

$$
\begin{equation*}
2\left(A B^{2}+A C^{2}\right)=4 A D^{2}+B C^{2} \tag{1}
\end{equation*}
$$

Similarly by taking $B E$ and $C F$ as medians,

$$
\begin{align*}
2\left(A B^{2}+B C^{2}\right) & =4 B E^{2}+A C^{2} \tag{2}\\
\text { and } \quad 2\left(A C^{2}+B C^{2}\right) & =4 C F^{2}+A B^{2} \tag{3}
\end{align*}
$$

Adding, (1), (2) and (iii), we get
$3\left(A B^{2}+B C^{2}+A C^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)$
Hence proved
123. $A B C$ is an isosceles triangle in which $A B=A C=$ $10 \mathrm{~cm} B C=12 \mathrm{~cm} P Q R S$ is a rectangle inside the isosceles triangle. Given $P Q=S R=y, P S=P R=2 x$. Prove that $x=6-\frac{3 y}{4}$.
Ans:
As per given condition we have drawn the figure below.

Here we have drawn $A L \perp B C$.
Since it is isosceles triangle, $A L$ is median of $B C$,

$$
B L=L C=6 \mathrm{~cm}
$$

In right $\triangle A L B$, by Pythagoras theorem,

$$
\begin{aligned}
A L^{2} & =A B^{2}-B L^{2} \\
& =10^{2}-6^{2}=64=8^{2}
\end{aligned}
$$

Thus $A L=8 \mathrm{~cm}$.
In $\triangle B P Q$ and $\triangle B L A$, angle $\angle B$ is common and

$$
\angle B P Q=\angle B L A=90^{\circ}
$$

Thus by $A A$ similarity we get

$$
\begin{aligned}
\triangle B P Q & \sim \angle B L A \\
\frac{P B}{P Q} & =\frac{B L}{A L} \\
\frac{6-x}{y} & =\frac{6}{8}
\end{aligned}
$$

$$
x=6-\frac{3 y}{4} \quad \text { Hence proved. }
$$

124.If $\triangle A B C$ is an obtuse angled triangle, obtuse angled at B and if $A D \perp C B$. Prove that:
$A C^{2}=A B^{2}+B C^{2}+2 B C \times B D$
Ans :
[Board 2020 Delhi Basic]
As per given condition we have drawn the figure below.

In $\triangle A D B$, by Pythagoras theorem

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{1}
\end{equation*}
$$

In $\triangle A D C$, By Pythagoras theorem,

$$
\begin{aligned}
A C^{2} & =A D^{2}+C D^{2} \\
& =A D^{2}+(B C+B D)^{2} \\
& =A D^{2}+B C^{2}+2 B C \times B D+B D^{2} \\
& =\left(A D^{2}+B D^{2}\right)+2 B C \times B D
\end{aligned}
$$

Substituting $\left(A D^{2}+B D^{2}\right)=A B^{2}$ we have

$$
A C^{2}=A B^{2}+B C^{2}+2 B C \times B D
$$

125.If A be the area of a right triangle and b be one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A b}{\sqrt{b^{4}+4 A^{2}}}$.
Ans :

As per given condition we have drawn the figure below.

Let $Q R=b$, then we have

$$
\begin{align*}
A & =a r(\triangle P Q R) \\
& =\frac{1}{2} \times b \times P Q \\
P Q & =\frac{2 \cdot A}{b} \tag{1}
\end{align*}
$$

Due to $A A$ similarity we have

$$
\begin{gather*}
\triangle P N Q \sim \Delta P Q R \\
\frac{P Q}{P R}=\frac{N Q}{Q R} \tag{2}
\end{gather*}
$$

From $\triangle P Q R$

$$
\begin{aligned}
P Q^{2}+Q R^{2} & =P R^{2} \\
\frac{4 A^{2}}{b^{2}}+b^{2} & =P R^{2} \\
P R & =\sqrt{\frac{4 A^{2}+b^{4}}{b^{2}}}
\end{aligned}
$$

Equation (2) becomes

$$
\begin{array}{r}
\frac{2 A}{b \times P R}=\frac{N Q}{b} \\
N Q=\frac{2 A}{P R}
\end{array}
$$

Altitude, $\quad N Q=\frac{2 A b}{\sqrt{4 A^{2}+b^{4}}} \quad$ Hence Proved.
126. In given figure $\angle 1=\angle 2$ and $\triangle N S Q \sim \Delta M T R$, then prove that $\triangle P T S \sim \triangle P R O$.

We have

$$
\Delta N S Q \cong \Delta M T R
$$

By CPCT we have

$$
\angle S Q N=\angle T R M
$$

From angle sum property we get

$$
\begin{gathered}
\angle P+\angle 1+\angle 2=\angle P+\angle P Q R+\angle P R Q \\
\angle 1+\angle 2=\angle P Q R+\angle P R Q
\end{gathered}
$$

Since $\angle 1=\angle 2$ and $\angle P Q R=\angle P R Q$ we get

$$
\begin{aligned}
2 \angle 1 & =2 \angle P Q R \\
\angle 1 & =\angle P Q R
\end{aligned}
$$

Also

$$
\angle 2=\angle Q P R
$$

(common)

Thus by $A A A$ similarity,

$$
\triangle P T S \sim \Delta P R Q
$$

127.In an equilateral triangle $A B C, D$ is a point on the side $B C$ such the $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
Ans:
[Board 2018, SQP 2017]
As per given condition we have shown the figure below. Here we have drawn $A P \perp B C$.

Here $A B=B C=C A$ and $B D=\frac{1}{3} B C$.
In $\triangle A D P$,

$$
\begin{aligned}
A D^{2} & =A P^{2}+D P^{2} \\
& =A P^{2}+(B P-B D)^{2} \\
& =A P^{2}+B P^{2}+B D^{2}+2 B P \cdot B D
\end{aligned}
$$

From $\triangle A P B$ using $A P^{2}+B P^{2}=A B^{2}$ we have

$$
\begin{aligned}
A D^{2} & =A B^{2}+\left(\frac{1}{3} B C\right)^{2}-2\left(\frac{B C}{2}\right)\left(\frac{B C}{3}\right) \\
& =A B^{2}+\frac{A B^{2}}{9}-\frac{A B^{2}}{3}=\frac{7}{9} A B^{2}
\end{aligned}
$$

