CHAPTER 10

CIRCLE

ONE MARK QUESTIONS

Multiple Choice Questions

1. From an external point Q, the length of tangent to a circle is 12 cm and the distance of Q from the centre of circle is 13 cm . The radius of circle (in cm) is
(a) 10
(b) 5
(c) 12
(d) 7

Ans :
[Board 2020 Delhi Basic]
Let O be the centre of the circle. As per given information we have drawn the figure below.

We have
$O Q=13 \mathrm{~cm}$
and
$P Q=12 \mathrm{~cm}$
Radius is perpendicular to the tangent at the point of contact.

Thus

$$
O P \perp P Q
$$

In $\triangle O P Q$, using Pythagoras theorem,

$$
\begin{aligned}
O P^{2}+P Q^{2} & =O Q^{2} \\
O P^{2}+12^{2} & =13^{2} \\
O P^{2} & =13^{2}-12^{2} \\
& =169-144 \\
& =25
\end{aligned}
$$

Thus
$O P=5 \mathrm{~cm}$
Thus (b) is correct option.
2. $Q P$ is a tangent to a circle with centre O at a point P on the circle. If $\triangle O P Q$ is isosceles, then $\angle O Q R$
equals.
(a) 30°
(b) 45°
(c) 60°
(d) 90°

Ans :
[Board 2020 Delhi Basic]
Let O be the centre of the circle. As per given information we have drawn the figure below.

We know that, the radius and tangent are perpendicular at their point of contact.
Now, in isosceles triangle $P O Q$ we have

$$
\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ}
$$

Equal sides subtend equal angles in isosceles triangle.
Thus

$$
\begin{aligned}
& 2 \angle O Q P+90^{\circ}=180^{\circ} \\
& \angle O Q P=45^{\circ}
\end{aligned}
$$

Thus (b) is correct option.
3. A chord of a circle of radius 10 cm , subtends a right angle at its centre. The length of the chord (in cm) is
(a) $\frac{5}{\sqrt{2}}$
(b) $5 \sqrt{2}$
(c) $10 \sqrt{2}$
(d) $10 \sqrt{3}$

Ans :
[Board 2020 OD Basic]
As per given information we have drawn the figure below.

Using Pythagoras theorem in $\triangle A B C$, we get

$$
\begin{aligned}
B C^{2} & =A B^{2}+A C^{2} \\
& =10^{2}+10^{2} \\
& =100+100=200 \\
B C & =10 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

Thus (c) is correct option.
4. In figure, O is the centre of circle. $P Q$ is a chord and $P T$ is tangent at P which makes an angle of 50° with $P Q \angle P O Q$ is

(a) 130°
(b) 90°
(c) 100°
(d) 75°

Ans:

[Board 2020 OD Basic]
Due to angle between radius and tangent,

$$
\begin{aligned}
& \angle O P T=90^{\circ} \\
& \angle O P Q=90^{\circ}-50^{\circ}=40^{\circ}
\end{aligned}
$$

Also,

$$
O P=O Q
$$

[Radii of a circle]
Since equal opposite sides have equal opposite angles,

$$
\begin{aligned}
\angle O P Q & =\angle O Q P=40^{\circ} \\
\angle P O Q & =180^{\circ}-\angle O P Q-\angle O Q P \\
& =180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}
\end{aligned}
$$

Thus (c) is correct option.
5. In figure, $A P, A Q$ and $B C$ are tangents of the circle with centre O. If $A B=5 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $B C=4$
cm , then the length of $A P$ (in cm) is

(a) 15
(b) 10
(c) 9
(d) 7.5

Ans :
[Board 2020 Delhi Basic]
Due to tangents from external points, $B P=B R, C R=C Q$, and $A P=A Q$
Perimeter of $\triangle A B C$,

$$
\begin{aligned}
& \qquad \begin{aligned}
& A B+B C+A C \\
&=A B+B R+R C+A C \\
& 5+4+6=A B+B P+C Q+A C \\
& 15=A P+A Q \\
& 15=2 A P \\
& \text { Thus } \quad A P=\frac{15}{2}=7.5 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Thus (d) is correct option.
6. In figure, on a circle of radius 7 cm , tangent $P T$ is drawn from a point P such that $P T=24 \mathrm{~cm}$. If O is the centre of the circle, then the length of $P R$ is

(a) 30 cm
(b) 28 cm
(c) 32 cm
(d) 25 cm

Ans :
[Board 2020 Delhi Basic]
Tangent at any point of a circle is perpendicular to the radius at the point of contact.

Thus $\quad O T \perp P T$
Now in right-angled triangle $P T O$

$$
O P^{2}=O T^{2}+P T^{2}
$$

$$
\begin{aligned}
& =(7)^{2}+(24)^{2} \\
& =49+576 \\
& =625
\end{aligned}
$$

Thus

$$
O P=25 \mathrm{~cm}
$$

Since $O R=O T$ because of radii of circle,

$$
P R=O P+O R=25+7=32 \mathrm{~cm}
$$

Thus (c) is correct option.
7. Two chords $A B$ and $C D$ of a circle intersect at E such that $A E=2.4 \mathrm{~cm}, B E=3.2 \mathrm{~cm}$ and $C E=1.6 \mathrm{~cm}$. The length of $D E$ is
(a) 1.6 cm
(b) 3.2 cm
(c) 4.8 cm
(d) 6.4 cm

Ans: (c) 4.8 cm

Applying the rule,

$$
\begin{aligned}
A E \times E B & =C E \times E D \\
2.4 \times 3.2 & =1.6 \times E D \\
E D & =4.8 \mathrm{~cm}
\end{aligned}
$$

Thus (c) is correct option.
8. If a regular hexagon is inscribed in a circle of radius r, then its perimeter is
(a) $3 r$
(b) $6 r$
(c) $9 r$
(d) $12 r$

Ans :
Side of the regular hexagon inscribed in a circle of radius r is also r, the perimeter is $6 r$.

Thus (b) is correct option.
9. Two circles of radii 20 cm and 37 cm intersect in A and B. If O_{1} and O_{2} are their centres and $A B=24 \mathrm{~cm}$, then the distance $O_{1} O_{2}$ is equal to
(a) 44 cm
(b) 51 cm
(c) 40.5 cm
(d) 45 cm

Ans :

Since C is the mid-point of $A B$,

$$
\begin{aligned}
& A C=12 \\
& A O_{1}=37
\end{aligned}
$$

and

$$
\begin{aligned}
A O_{2} & =20 \\
C O_{1} & =\sqrt{37^{2}-12^{2}}=35 \\
C O_{2} & =\sqrt{20^{2}-12^{2}}=16 \\
O_{1} O_{2} & =35+16=51
\end{aligned}
$$

Thus (b) is correct option.
10. In the adjoining figure, $T P$ and $T Q$ are the two tangents to a circle with centre O. If $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is

(a) 60°
(b) 70°
(c) 80°
(d) 90°

Ans :
Here $O P \perp P T$ and $O Q \perp Q T$,
In quadrilateral $O P T Q$, we have

$$
\begin{gathered}
\angle P O Q+\angle O P T+\angle P T Q+\angle O Q T=360^{\circ} \\
110^{\circ}+90^{\circ}+\angle P T Q+90^{\circ}=360^{\circ} \\
\angle P T Q=70^{\circ}
\end{gathered}
$$

Thus (b) is correct option.
11. $A B$ and $C D$ are two common tangents to circles
which touch each other at a point C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$ then $A B$ is
(a) 12 cm
(b) 8 cm
(c) 4 cm
(d) 6 cm

Ans:

$$
\begin{aligned}
A D & =C D \text { and } B D=C D \\
A B & =A D+B D=C D+C D \\
& =2 C D=2 \times 4=8 \mathrm{~cm}
\end{aligned}
$$

Thus (b) is correct option.
12. In the adjoining figure, $P T$ is a tangent at point C of the circle. O is the circumference of $\triangle A B C$. If $\angle A C P=118^{\circ}$, then the measure of $\angle x$ is

(a) 28°
(b) 32°
(c) 42°
(d) 38°

Ans :

We join $O C$ as shown in the below figure. Here $O C$ is the radius and $P T$ is the tangent to circle at point C.

$$
\text { Thus } \begin{aligned}
O C & \perp P T \\
\angle O C P & =90^{\circ} \\
\text { Given, } & \\
\angle A C P & =118^{\circ} \\
\angle A C O & =\angle A C P-\angle O C P \\
& =118^{\circ}-90^{\circ}=28^{\circ} \\
\angle A C O & =28^{\circ}
\end{aligned}
$$

Since O is the circumcentre, thus $O A=O C$ (radius)

$$
\begin{aligned}
\angle O A C & =\angle A C O \\
x & =28^{\circ}
\end{aligned}
$$

Thus (a) is correct option.
13. In the given figure, a circle touches all the four sides of quadrilateral $A B C D$ with $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C D=4 \mathrm{~cm}$, then length of $A D$ is

(a) 3 cm
(b) 4 cm
(c) 5 cm
(d) 6 cm

Ans :
Four sides of a quadrilateral $A B C D$ are tangent to a circle.

$$
\begin{aligned}
A B+C D & =B C+A D \\
6+4 & =7+A D
\end{aligned}
$$

$$
A D=10-7=3 \mathrm{~cm}
$$

Thus (a) is correct option.
14. Two concentric circles of radii a and b where $a>b$, The length of a chord of the larger circle which touches the other circle is
(a) $\sqrt{a^{2}+b^{2}}$
(b) $2 \sqrt{a^{2}+b^{2}}$
(c) $\sqrt{a^{2}-b^{2}}$
(d) $2 \sqrt{a^{2}-b^{2}}$

Ans:

In $\triangle O A L$,

$$
\begin{aligned}
O A^{2} & =O L^{2}+A L^{2} \\
a^{2} & =O L^{2}+b^{2} \\
O L & =\sqrt{a^{2}-b^{2}}
\end{aligned}
$$

Length of chord,

$$
2 A L=2 \sqrt{a^{2}-b^{2}}
$$

Thus (d) is correct option.
15. Two concentric circles are of radii 10 cm and 8 cm , then the length of the chord of the larger circle which touches the smaller circle is
(a) 6 cm
(b) 12 cm
(c) 18 cm
(d) 9 cm

Ans :
Let O be the centre of the concentric circles of radii 10 cm and 8 cm , respectively. Let $A B$ be a chord of the larger circle touching the smaller circles at P.

Then,

$$
A P=P B \text { and } O P \perp A B
$$

Applying Pythagoras theorem in $\triangle O P A$, we have

$$
\begin{aligned}
O A^{2} & =O P^{2}+A P^{2} \\
100 & =64+A P^{2} \\
A P^{2} & =100-64=36 \Rightarrow A P=6 \mathrm{~cm} \\
A B & =2 A P=2 \times 6=12 \mathrm{~cm}
\end{aligned}
$$

Thus (b) is correct option.
16. In the given figure, $P A$ is a tangent from an external point P to a circle with centre O. If $\angle P O B=115^{\circ}$, then perimeter of $\angle A P O$ is

(a) 25°
(b) 20°
(c) 30°
(d) 65°

Ans :

Since tangent at a point to a circle is perpendicular to the radius,

$$
\angle O A P=90^{\circ}
$$

$$
\text { Now, } \quad \begin{aligned}
\angle A O P+\angle B O P & =180^{\circ} \\
\angle A O P+115^{\circ} & =180^{\circ} \\
\angle A O P & =\left(180^{\circ}-115^{\circ}\right)=65^{\circ}
\end{aligned}
$$

From angle sum property of triangle we have

$$
\begin{aligned}
\angle O A P+\angle A O P+\angle A P O & =180^{\circ} \\
90^{\circ}+65^{\circ}+\angle A P O & =180^{\circ} \\
155^{\circ}+\angle A P O & =180^{\circ} \\
\angle A P O & =180^{\circ}-155^{\circ}=25^{\circ}
\end{aligned}
$$

Thus (a) is correct option.
17. From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. If $C D$ is the tangent to the circle at a point E and $P A=14 \mathrm{~cm}$. The perimeter of $\triangle P C D$ is
(a) 14 cm
(b) 21 cm
(c) 28 cm
(d) 35 cm

Ans :
As per information given in question we have drawn figure below.

Here

$$
P A=P B=14 \mathrm{~cm}
$$

Also, $C D$ is tangent at point E on the circle.
So, $C A$ and $C E$ are tangent to the circle from point C.

Therefore, $\quad C A=C E$,
Similarly, $\quad D B=D E$
Now, perimeter of $\triangle P C D$,

$$
\begin{aligned}
P C+C D+P D & =P C+C E+E D+P D \\
& =P C+C A+P D+D B \\
& =P A+P B \\
& =14+14 \\
& =28 \mathrm{~cm}
\end{aligned}
$$

Thus (c) is correct option.
18. In the given figure, two tangents $A B$ and $A C$ are drawn to a circle with centre O such that $\angle B A C=120^{\circ}$, then $O A$ is equal to that

(a) $2 A B$
(b) $3 A B$
(c) $4 A B$
(d) $5 A B$

Ans:
In $\triangle O A B$ and $\triangle O A C$, we have,

$$
\angle O B A=\angle O C A=90^{\circ}
$$

$$
\begin{array}{lr}
O A=O A & {[\text { common }]} \\
O B=O C & {[\text { radii of circle }]}
\end{array}
$$

and
So, by RHS congruence criterion,

$$
\begin{aligned}
& \triangle O B A \cong \triangle O C A \\
& \angle O A B=\angle O A C=\frac{1}{2} \times 120^{\circ}=60^{\circ}
\end{aligned}
$$

In $\triangle O B A$, we have,

$$
\begin{aligned}
\cos 60^{\circ} & =\frac{A B}{O A} \\
\frac{1}{2} & =\frac{A B}{O A} \\
O A & =2 A B
\end{aligned}
$$

Thus (a) is correct option.
19. In the given figure, three circles with centres P, Q and R are drawn, such that the circles with centres Q and R touch each other externally and they touch the circle with centre P, internally. If $P Q=10 \mathrm{~cm}$, $P R=8 \mathrm{~cm}$ and $Q R=12 \mathrm{~cm}$, then the diameter of the
largest circle is:

(a) 30 cm
(b) 20 cm
(c) 10 cm
(d) None of these

Ans :

Let radii of the circles with centres P, Q and R are p, q and r, respectively.

Then,

$$
\begin{align*}
P Q & =p-q=10 \tag{1}\\
P R & =p-r=8 \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
Q R=q+r=12 \tag{3}
\end{equation*}
$$

Adding equation (2) and (3), we get,

$$
\begin{equation*}
p+q=20 \tag{4}
\end{equation*}
$$

Adding equation (1) and (4), we get,

$$
2 p=30
$$

Hence, diameter of the largest circle $2 p=30$.
Thus (a) is correct option.
20. If radii of two concentric circles are 4 cm and 5 cm , then the length of each of one circle which is tangent to the other circle, is
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 1 cm

Ans :
Let C be the centre of two concentric circles C_{1} and C_{2}, whose radii are $r_{1}=4 \mathrm{~cm}$ and $r_{2}=5 \mathrm{~cm}$.
Now, we draw a chord $A B$ of circle C_{2}, which touches C_{1} at P.

$A B$ is tangent at P and $C P$ is radius at P. Tangent at any point of circle is perpendicular to the radius through the point of contact.
Thus

$$
C P \perp A B
$$

Now, in right triangle $P A C$
By Pythagoras theorem we have

$$
\begin{aligned}
A P^{2} & =A C^{2}-P C^{2}=5^{2}-4^{2}=25-16=9 \\
A P & =3 \mathrm{~cm}
\end{aligned}
$$

So, length of chord,

$$
A B=2 A P=2 \times 3=6 \mathrm{~cm}
$$

Thus (b) is correct option.
21. In figure, if $\angle A O B=125^{\circ}$, then $\angle C O D$ is equal to

(a) 62.5°
(b) 45°
(c) 35°
(d) 55°

Ans :

We know that, a quadrilateral circumscribing a circle subtends supplementary angles at the centre of the circle.
i.e.

$$
\begin{aligned}
\angle A O B+\angle C O D & =180^{\circ} \\
125^{\circ}+\angle C O D & =180^{\circ} \\
\angle C O D & =180^{\circ}-125^{\circ}=55^{\circ}
\end{aligned}
$$

Thus (d) is correct option.
22. In figure, $A T$ is a tangent to the circle with centre O such that $O T=4 \mathrm{~cm}$ and $\angle O T A=30^{\circ}$. Then, $A T$ is equal to

(a) 4 cm
(b) 2 cm
(c) $2 \sqrt{3} \mathrm{~cm}$
(d) $4 \sqrt{3} \mathrm{~cm}$

Ans :

First we joint $O A$. The tangent at any point of a circle is perpendicular to the radius through the point of contact.

$$
\angle O A T=90^{\circ} \text { and } O T=4 \mathrm{~cm} \text { (given) }
$$

In $\triangle O A T, \quad \cos 30^{\circ}=\frac{A T}{O T}$

$$
\begin{aligned}
& \frac{A T}{4}=\frac{\sqrt{3}}{2} \\
& A T=2 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

Thus (c) is correct option.
23. Assertion : If in a circle, the radius of the circle is 3 cm and distance of a point from the centre of a circle is 5 cm , then length of the tangent will be 4 cm .
Reason: $(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { height })^{2}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

$$
\begin{aligned}
O A^{2} & =A B^{2}+O B^{2} \\
5^{2} & =A B^{2}+3^{2} \\
A B & =\sqrt{25-9}=4 \mathrm{~cm}
\end{aligned}
$$

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Thus (a) is correct option.
24. Assertion : The two tangents are drawn to a circle from an external point, then they subtend equal angles at the centre.
Reason : A parallelogram circumscribing a circle is a rhombus.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
From an external point the two tangents drawn subtend equal angles at the centre.
So assertion is true.
Also, a parallelogram circumscribing a circle is a rhombus, so reason is also true but R is not correct explanation of A.

Thus (b) is correct option.
25. Assertion : $P A$ and $P B$ are two tangents to a circle with centre O. Such that $\angle A O B=110^{\circ}$, then $\angle A P B=90^{\circ}$.
Reason : The length of two tangents drawn from an external point are equal.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
Ans : (d) Assertion (A) is false but reason (R) is true.
As per information given in question we have drawn figure below.

Radius is perpendicular to the tangent at point of contact.

Thus, $O A \perp A P$ and $O B \perp P B$.
In quadrilateral, $O A P B$, we have
$\angle O A P+\angle A P B+\angle P B O+\angle A O B=360^{\circ}$

$$
\begin{aligned}
90^{\circ}+\angle A P B+90^{\circ}+110^{\circ} & =360^{\circ} \\
\angle A P B & =70^{\circ}
\end{aligned}
$$

Assertion (A) is false but reason (R) is true.
Thus (d) is correct option.

Fill in the Blank Questions

26. The lengths of the two tangents from an external point to a circle are \qquad
Ans :
parallel
27. A line that intersects a circle in one point only is called \qquad
Ans :
tangent
28. The tangents drawn at the ends of a diameter of a circle are \qquad ...
Ans :
two
29. A tangent of a circle touches it at \qquad point(s).
Ans:
one
30. Tangent is perpendicular to the \qquad through the point of contact.
Ans :
radius
31. A line intersecting a circle at two points is
called a \qquad
Ans :
secant
32. A circle can have \qquad parallel tangents at the most.
Ans :
two
33. The common point of a tangent to a circle and the circle is called \qquad
Ans :
point of contact
34. There is no tangent to a circle passing through a point lying \qquad the circle.
Ans :
inside
35. The tangent to a circle is \qquad to the radius through the point of contact.
Ans :
perpendicular
36. There are exactly two tangents to a circle passing through a point lying \qquad the circle.
Ans :
outside equal
37. Length of two tangents drawn from an external point are \qquad
Ans :
equal
38. In given figure, the length $P B=$ \qquad cm .

Ans:
[Board 2020 OD Standard]
We have

$$
A O=5 \mathrm{~cm}
$$

and

$$
O P=3 \mathrm{~cm}
$$

Since $A B$ is a tangent at P and $O P$ is radius, we have

$$
\angle A P O=90^{\circ}
$$

In right angled $\triangle O P A$,

$$
\begin{aligned}
A P^{2} & =A O^{2}-O P^{2} \\
& =(5)^{2}-(3)^{2}=25-9=16 \\
A P & =4 \mathrm{~cm}
\end{aligned}
$$

Perpendicular from centre to chord bisect the chord. Thus

$$
A P=B P=4 \mathrm{~cm}
$$

39. In figure, $\triangle A B C$ is circumscribing a circle, the length of $B C$ is \qquad cm .

Ans :
[Board 2020 Delhi Standard]
Since $A P$ and $A R$ are tangents to the circle from external point A, we have

$$
A P=A R=4 \mathrm{~cm}
$$

Similarly, $P B$ and $B Q$ are tangents.
Therefore $\quad B P=B Q=3 \mathrm{~cm}$
Now,
$C R=A C-A R=11-4=7 \mathrm{~cm}$
Similarly, $C R$ and $C Q$ are tangents.
Therefore

$$
C R=C Q=7 \mathrm{~cm}
$$

Now,

$$
B C=B Q+C Q=3+7=10 \mathrm{~cm}
$$

Hence, the length of $B C$ is 10 cm .

Very Short Answer Questions

40. If the angle between two radii of a circle is 130°, then what is the angle between the tangents at the end points of radii at their point of intersection?
Ans :
[Board Term-2 2012]
Sum of the angles between radii and between
intersection point of tangent is always 180°.
Thus angle at the point of intersection of tangents

$$
=180^{\circ}-130^{\circ}=50^{\circ}
$$

41. To draw a pair of tangents to a circle which are inclined to each other at an angle of 30°, it is required to draw tangents at end points of two radii of the circle, what will be the angle between them ?
Ans :
[Board Term-2 2012]
Sum of the angles between radii and between intersection point of tangent is always 180°.

$$
\text { Angle between the radii }=180^{\circ}-30^{\circ}=150^{\circ}
$$

42. If the radii of two concentric circle are 4 cm and 5 cm , then find the length of each chord of one circle which is tangent to the other circle.
Ans :
As per given information we have drawn the figure below.

Since chord $A B$ is tangent to circle C_{1} at point M,

$$
O M \perp A B
$$

In $\triangle O M B, \quad O B^{2}=O M^{2}+M B^{2}$

$$
\begin{aligned}
25 & =4^{2}+M B^{2} \\
M B^{2} & =25-16=9 \\
M B & =3
\end{aligned}
$$

Since, $O M \perp A B$, we obtain $A M=M B$
Now,

$$
A B=2 M B=2 \times 3=6 \mathrm{~cm}
$$

Hence, length of chord is 6 cm .
43. If a circle can be inscribed in a parallelogram how will
the parallelogram change?
Ans :
[Board Term-2, 2014]
It changes into a rectangle or a square.
44. What is the maximum number of parallel tangents a circle can have on a diameter?
Ans :
[Board Term-2 2012]
Tangent touches a circle on a distinct point. Only two parallel tangents can be drawn on the diameter of a circle. It has been shown in figure given below.

45. In the given figure, $A O B$ is a diameter of the circle with centre O and $A C$ is a tangent to the circle at A . If $\angle B O C=130^{\circ}$, the find $\angle A C O$.

Ans :

[Board Term-2 Foreign 2016]
Here $O A$ is radius and $A C$ is tangent at A, since radius is always perpendicular to tangent, we have

$$
\angle O A C=90^{\circ}
$$

From exterior angle property,

$$
\begin{gathered}
\angle B O C=O A C+\angle A C O \\
130^{\circ}=90^{\circ}+\angle A C O \\
\angle A C O=130^{\circ}-90^{\circ}=40^{\circ}
\end{gathered}
$$

46. If a line intersects a circle in two distinct points, what is it called?
Ans :
[Board Term-2, 2012]
The line which intersects a circle in two distinct points is called secant.
47. Two concentric circles are of radii 5 cm and

3 cm . Find the length of the chord of larger circle (in cm) which touches the smaller circle.

Ans :
[Board 2020 OD Basic, Foreign 2014]

As per the given question we draw the figure as below.

Here $A B$ is the chord of large circle which touch the smaller circle at point C. We can see easily that $\triangle A O C$ is right angled triangle.
Here, $A O=5 \mathrm{~cm}, O C=3 \mathrm{~cm}$

$$
\begin{aligned}
A C & =\sqrt{A O^{2}-O C^{2}} \\
& =\sqrt{5^{2}-3^{2}} \\
& =\sqrt{25-9}=\sqrt{16}=4
\end{aligned}
$$

cm
Length of chord, $A B=8 \mathrm{~cm}$.
48. In figure, $P A$ and $P B$ are tangents to the circle with centre O such that $\angle A P B=50^{\circ}$. Write the measure of $\angle O A B$.

Ans :
[[Board Term-2 Delhi 2015]
We have $\quad \angle A P B=50^{\circ}$

$$
\angle P A B=\angle P B A=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}
$$

Here $O A$ is radius and $A P$ is tangent at A, since radius is always perpendicular to tangent at point of contact, we have

$$
\begin{aligned}
\angle O A P & =90^{\circ} \\
\angle O A B & =\angle O A P-\angle P A B \\
& =90^{\circ}-65^{\circ}=25^{\circ}
\end{aligned}
$$

Now
49. If $P Q$ and $P R$ are two tangents to a circle with centre O. If $\angle Q P R=46^{\circ}$ then find $\angle Q O R$.

Ans:

[Board Term-2 Delhi 2014]
We have $\quad \angle Q P R=46^{\circ}$
Since $\angle Q O R$ and $\angle Q P R$ are supplementary angles

$$
\begin{aligned}
\angle Q O R+\angle Q P R & =180^{\circ} \\
\angle Q O R+46^{\circ} & =180^{\circ} \\
\angle Q O R & =180^{\circ}-46^{\circ}=134^{\circ}
\end{aligned}
$$

50. What is the length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm ?
Ans :
[Board Term-2, 2012]
As per the given question we draw the figure as below.

Length of the tangent, $\quad l=\sqrt{d^{2}-r^{2}}$

$$
\begin{aligned}
& =\sqrt{8^{2}-6^{2}} \\
& =\sqrt{64-36} \\
& =\sqrt{28}=2 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

51. In figure, $P A$ and $P B$ are two tangents drawn from an external point P to a circle with centre C and radius 4 cm . If $P A \perp P B$, then find the length of
each tangent.

Ans:

[Board Term-2, 2013]
Here tangent drawn on circle from external point P are at aright angle, $C A P B$ will be a square.
Thus

$$
C A=A P=P B=B C=4 \mathrm{~cm}
$$

Thus length of tangent is 4 cm .
52. In the given figure, $P Q$ and $P R$ are tangents to the circle with centre O such that $\angle Q P R=50^{\circ}$, Then find $\angle O Q R$.

Ans :
[Board Term-2 Delhi 2012, 2015]
We have

$$
\angle Q P R=\angle 50^{\circ}
$$

(Given)
Since $\angle Q O R$ and $\angle Q P R$ are supplementary angles

$$
\begin{aligned}
\angle Q O R+\angle Q P R & =180^{\circ} \\
\angle Q O R & =180^{\circ}-\angle Q P R \\
& =180^{\circ}-50^{\circ}=130^{\circ}
\end{aligned}
$$

From $\triangle O Q R$ we have

$$
\begin{aligned}
\angle O Q R & =\angle O R Q=\frac{180^{\circ}-130^{\circ}}{2} \\
& =\frac{50^{\circ}}{2}=25^{\circ}
\end{aligned}
$$

53. In the figure, $Q R$ is a common tangent to given circle which meet at T. Tangent at T meets $Q R$ at P. If
$Q P=3.8 \mathrm{~cm}$, then find length of $Q R$.

Ans:
[Board Term-2 Delhi 2012, 2014]
Let us first consider large circle. Since length of tangents from external points are equal, we can write

Thus

$$
\begin{equation*}
Q P=P T=3.8 \tag{1}
\end{equation*}
$$

Now consider the small circle. For this circle we can also write using same logic,

$$
P R=P T
$$

But we have $P T=3.8 \mathrm{~cm}$
Thus

$$
P R=P T=3.8 \mathrm{~cm}
$$

Now

$$
\begin{aligned}
Q R & =Q P+P R \\
& =3.8+3.8=7.6 \mathrm{~cm}
\end{aligned}
$$

No Need to Buy any Question Bank or Sample Chapter From Market. Download Free PDF of all Study Material from
54. $P A$ and PB are tangents from point P to the circle with centre O as shown in figure. At point M, a tangent is drawn cutting $P A$ at K and $P B$ at N. Prove that $K N=A K+B N$

Ans:
Since length of tangents from an external
point to a circle are equal,

$$
\begin{aligned}
P A & =P B, K A=K M, N B=N M \\
K A+N B & =K M+N M \\
A K+B N & =K N . \quad \text { Hence Proved }
\end{aligned}
$$

55. In the figure, $P A$ and $P B$ are tangents to a circle with centre O. If $\angle A O B=120^{\circ}$, then find $\angle O P A$.

Ans:

[Board Term-2 Delhi 2012, 2014]
Here $O A$ is radius and $A P$ is tangent at A, since radius is always perpendicular to tangent at point of contact, we have

$$
\angle O A P=90^{\circ}
$$

Due to symmetry we have

$$
\angle A O P=\frac{\angle A O B}{2}=\frac{120^{\circ}}{2}=60^{\circ}
$$

Now in right $\triangle A O P$ we have

$$
\begin{aligned}
\angle A P O+\angle O A P+\angle A O P & =180^{\circ} \\
\angle A P O+90^{\circ}+60^{\circ} & =180^{\circ} \\
\angle A P O & =180^{\circ}-150^{\circ}=30^{\circ} .
\end{aligned}
$$

56. $P Q$ is a tangent drawn from an external point P to a circle with centre $O, Q O R$ is the diameter of the circle. If $\angle P O R=120^{\circ}$, What is the measure of $\angle O P Q$?

Ans :
[Board Term-2 Foreign 2017]

Since $P Q$ is a tangent to the circle, $\triangle O Q P$ is right angle triangle
In $\triangle O Q P$ because of exterior angle,

Thus

$$
\angle P O R=\angle O Q P+\angle O P Q
$$

$$
\begin{aligned}
\angle O P Q & =\angle P O R-\angle O Q P \\
& =120^{\circ}-90^{\circ}=30^{\circ}
\end{aligned}
$$

57. Two tangents making an angle of 60° between them are drawn to a circle of radius $\sqrt{3} \mathrm{~cm}$, then find the length of each tangent.
Ans:
[Board, Term-2, 2013]
As per the given question we draw the figure as below.

Since,

$$
\tan \theta=\frac{O A}{A P}
$$

So.

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{O A}{A P} \\
\frac{1}{\sqrt{3}} & =\frac{\sqrt{3}}{A P} \\
A P & =\sqrt{3} \times \sqrt{3}=3 \mathrm{~cm}
\end{aligned}
$$

58. In figure, $A P$ and $B P$ are tangents to a circle with centre O, such that $A P=5 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord $A B$.

Since length of 2 tangents drawn from an external point to a circle are equal, we have

$$
P A=P B
$$

Thus

$$
\angle P A B=\angle P B A=60^{\circ}
$$

Hence $\triangle P A B$ is an equilateral triangle.
Therefore $A B=P A=5 \mathrm{~cm}$.
59. In the given figure, find $\angle Q S R$.

Ans :

[Board Term-2, 2012]
Sum of the angles between radii and between intersection point of tangent is always 180°.

$$
\text { Thus } \quad \begin{aligned}
\angle R O Q+\angle R P Q & =180^{\circ} \\
\angle R O Q & =180^{\circ}-60^{\circ}=120^{\circ}
\end{aligned}
$$

We know that angle subtended on the centre of a circle is twice of the angle subtended on circumference of circle

Thus

$$
\begin{aligned}
\angle Q S R & =\frac{1}{2} \angle R O Q=\frac{1}{2} \times 120^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

60. A triangle $A B C$ is drawn to circumscribe a circle. If $A B=13 \mathrm{~cm}, B C=14 \mathrm{~cm}$ and $A E=7 \mathrm{~cm}$, then find $A C$.

Ans :

[Board Term-2 Delhi 2012]

Thus

$$
A F=A E=7 \mathrm{~cm}
$$

Now

$$
B F=A B-A F=13-7=6 \mathrm{~cm}
$$

Since $B F$ and $B D$ are tangent of the circle, $B F=B D$
Thus

$$
B D=B F=6 \mathrm{~cm}
$$

Now

$$
C D=B C-B D=14-6=8 \mathrm{~cm}
$$

Since $C D$ and $C E$ are tangent of the circle, $C D=C E$
Thus

$$
C E=C D=8 \mathrm{~cm}
$$

Now

$$
\begin{aligned}
A C & =A E+E C \\
& =7+8=15 \mathrm{~cm}
\end{aligned}
$$

61. In given figure, if $A T$ is a tangent to the circle with centre O, such that $O T=4 \mathrm{~cm}$ and $\angle O T A=30^{\circ}$, then find the length of $A T$ (in cm).

Ans :

[Board Term-2, 2012 Set (13)]
Since $A T$ is a tangent to the circle, $\triangle O A T$ is right angle triangle
Now $\quad \cos 30^{\circ}=\frac{A T}{O T}$

$$
\begin{aligned}
A T & =O T \cos 30^{\circ} \\
& =4 \times \frac{\sqrt{3}}{2}=2 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

Thus the length of $A T$ is $2 \sqrt{3} \mathrm{~cm}$.
62. In the given figure, $A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$. If $A T$ is the tangent to the circle at the point A , find $\angle B A T$.

Ans :
[Board Term-2 2012]
We have $\quad \angle A C B=50^{\circ}$
Since $\angle C B A$ is angle in semi-circle,

Now $\quad \angle O A B=180^{\circ}-90^{\circ}-50^{\circ}$

$$
=40^{\circ}
$$

$$
\begin{aligned}
\angle B A T & =90^{\circ}-\angle O A B \\
& =90^{\circ}-40^{\circ}=50^{\circ}
\end{aligned}
$$

63. In the figure there are two concentric circles with centre $O . P R T$ and $P Q S$ are tangents to the inner circle from a point P lying on the outer circle. If $P R=5 \mathrm{~cm}$ find the length of $P S$.

Ans :
[Board Term-2 Delhi Compt. 2017]
Since $P Q$ and $P R$ are tangent of the circle, $P Q=P R$

$$
P Q=P R=5 \mathrm{~cm}
$$

Since $P S$ is chord of circle and point Q bisect it, thus

$$
\begin{aligned}
P Q & =Q S \\
P S & =2 P Q \\
& =2 \times 5=10 \mathrm{~cm}
\end{aligned}
$$

64. In figure, O is the centre of the circle, $P Q$ is a chord and $P T$ is tangent to the circle at P.

Ans :
We have

$$
\begin{aligned}
\angle O P Q & =\angle O Q P \\
& =\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}
\end{aligned}
$$

Thus

$$
T P Q=90^{\circ}-55^{\circ}=35^{\circ}
$$

TWO MARKS QUESTIONS

65. A circle is inscribed in a $\triangle A B C$ touching $A B, B C$ and $A C$ at P, Q and R respectively. If $A B=10 \mathrm{~cm}$ $A R=7 \mathrm{~cm}$ and $C R=5 \mathrm{~cm}$, then find the length of $B C$

Ans:

[Board 2020 OD Basic]
As per given information we have drawn the figure below.
Here a circle is inscribed in a $\triangle A B C$ touching $A B$, $B C$ and $A C$ at P, Q and R respectively.

Since, tangents drawn to a circle from an external point are equal,

$$
\begin{aligned}
& A P=A R=7 \mathrm{~cm} \\
& C Q=C R=5 \mathrm{~cm}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& B P=(A B-A P)=10-7=3 \mathrm{~cm} \\
& B P=B Q=3 \mathrm{~cm} \\
& B C=B Q+Q C=3+5=8 \mathrm{~cm}
\end{aligned}
$$

66. In figure, a circle touches all the four sides of a quadrilateral $A B C D$. If $A B=6 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$, then find the length of $A D$.

Ans:
[Board 2020 Delhi Basic]
As per given information we have redrawn the figure below.

Tangents drawn from an external point to a circle are equal in length.

Thus $A P=A S$ and let it be x.
Similarly, $B P=B Q, C Q=C R$ and $R D=D S$
Now $\quad B P=A B-A P=6-x$
$B P=B Q=6-x$
$C Q=B C-B Q=9-(6-x)=3+x$
Now, $\quad C Q=C R=3+x$
$R D=C D-C R=8-(3+x)=5-x$
Now, $\quad R D=D S=5-x$
$A D=A S+S D=x+5-x=5$
Thus $A D$ is 5 cm .
67. In the given figure, from a point P, two tangents $P T$ and $P S$ are drawn to a circle with centre O such that $\angle S P T=120^{\circ}$, Prove that $O P=2 P S$.

Ans :
[Board Term-2 Foreign 2016]
We have $\quad \angle S P T=120^{\circ}$
As $O P$ bisects $\angle S P T$,

$$
\angle O P S=\frac{120^{\circ}}{2}=60^{\circ}
$$

Since radius is always perpendicular to tangent,

$$
\angle P T O=90^{\circ}
$$

Now in right triangle $P O S$, we have

$$
\begin{aligned}
\cos 60^{\circ} & =\frac{P S}{O P} \\
\frac{1}{2} & =\frac{P S}{O P} \\
O P & =2 P S \quad \text { Hence proved. }
\end{aligned}
$$

68. From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. If $\angle P A B=50^{\circ}$, then find $\angle A O B$.

Ans :

[Board Term-2 Delhi 2016]
As per the given question we draw the figure as below.

Since $P A \perp O A, \angle O A P=90^{\circ}$

$$
\begin{aligned}
\angle O A B & =\angle O A P-\angle B A P \\
& =90^{\circ}-50^{\circ}=40^{\circ}
\end{aligned}
$$

Since $O A$ and $O B$ are radii, we have

$$
\angle O A B=\angle O B A=40^{\circ}
$$

Now

$$
\begin{aligned}
\angle A O B+\angle O A B+\angle O B A & =180^{\circ} \\
\angle A O B+40^{\circ}+40^{\circ} & =180^{\circ} \\
\angle A O B & =180^{\circ}-80^{\circ}=100^{\circ}
\end{aligned}
$$

Hence

$$
\angle A O B=100^{\circ}
$$

69. If O is centre of a circle, $P Q$ is a chord and the tangent $P R$ at P makes an angle of 50° with $P Q$,
find $\angle P O Q$.

Ans :
[Board Term-2, 2012]
We have $\quad \angle R P Q=50^{\circ}$
Since $\angle O P Q+\angle Q P R$ is right angle triangle,

$$
\angle O P Q=90^{\circ}-50^{\circ}=40^{\circ}
$$

Since, $O P=O Q$ because of radii of circle, we have

$$
\angle O P Q=\angle O Q R=40^{\circ}
$$

In $\triangle P O Q$ we have

$$
\begin{aligned}
\angle P O Q & =180^{\circ}-(\angle O P Q+\angle O Q P) \\
& =180^{\circ}-\left(40^{\circ}+40^{\circ}\right) \\
& =100^{\circ}
\end{aligned}
$$

70. Prove that the lengths of two tangents drawn from an external point to a circle are equal.
Ans :
[Board 2020 OD Basic, 2018]
Consider a circle of radius r and centre at O as shown in figure below. Here we have drawn two tangent from P at A and B. We have to prove that

$$
A P=P B
$$

We join $O A, O B$ and $O P$. In $\triangle P A O$ and $\triangle P B O, O P$
is common and $O A=O B$ radius of same circle.
Since radius is always perpendicular to tangent, at point of contact,

$$
\angle O A P=\angle O B P=90^{\circ}
$$

Thus

$$
\triangle P A O \cong \triangle P B O
$$

and hence,

$$
A P=B P
$$

Thus length of 2 tangents drawn from an external point to a circle are equal.
71. In the given figure, a circle is inscribed in a $\triangle A B C$, such that it touches the sides $A B, B C$ and $C A$ at points D, E and F respectively. If the lengths of sides $A B, B C$ and $C A$ are $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively, find the lengths of $A D, B E$ and $C F$.

Ans :

[Board Term-2 Delhi 2016]
Since $A F$ and $A D$ are tangent of the circle, $A F=A D$
Let

$$
A F=A D=x
$$

Now

$$
D B=A B-A D=12-x
$$

Since $B D$ and $B E$ are tangent of the circle, $B D=B E$
Thus

$$
B E=B D=12-x
$$

Now

$$
C E=C B-B E=8-(12-x)
$$

Since $C F$ and $C E$ are tangent of the circle, $C F=C E$
Thus

$$
C F=C E=8-(12-x) \mathrm{cm}
$$

But

$$
A C=C F+F A
$$

Substituting values we have

$$
\begin{aligned}
10 & =8-(12-x)+x \\
10 & =2 x-4 \\
2 x & =10+4=14 \\
x & =7
\end{aligned}
$$

Thus $A D=7 \mathrm{~cm}, B E=5 \mathrm{~cm}, C F=3 \mathrm{~cm}$
72. Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle is bisected at the point of contact.
Ans :
[Board Term-2, 2012]
As per the given question we draw the figure as below.

Since $O P$ is radius and $A P B$ is tangent, $O P \perp A B$. Now for bigger circle, O is centre and $A B$ is chord such that $O P \perp A B$.
Thus $O P$ bisects $A B$.
73. In the given figure $P Q$ is chord of length 6 cm of the circle of radius $6 \mathrm{~cm} . T P$ and $T Q$ are tangents to the circle at points P and Q respectively. Find $\angle P T Q$.

Ans :

[Board Term-2 Delhi 2016]
We have $P Q=6 \mathrm{~cm}, O P=O Q=6 \mathrm{~cm}$
Since $P Q=O P=O Q$, triangle $\triangle P Q O$ is an equilateral triangle.
Thus $\quad \angle P O Q=60^{\circ}$
Now we know that $\angle P O Q$ and $\angle P T Q$ are supplementary angle,

$$
\begin{aligned}
\angle P O Q+\angle P T Q & =180^{\circ} \\
\angle P T Q & =180^{\circ}-\angle P O Q \\
& =180^{\circ}-60^{\circ}=120^{\circ}
\end{aligned}
$$

Thus $\angle P T Q=120^{\circ}$

$$
=90^{\circ}-29^{\circ}=61^{\circ}
$$

Thus $\angle A T Q=\angle A T B=61^{\circ}$
75. In figure, a triangle $A B C$ is drawn to circumscribe a circle of radius 3 cm , such that the segments $B D$ and $D C$ are respectively of lengths 6 cm and 9 cm . If the area of $\triangle A B C$ is $54 \mathrm{~cm}^{2}$, then find the lengths of sides $A B$ and $A C$.

Ans :

[Board Term-2 OD 2015]
We redraw the given circle as shown below.

Since tangents from an external point to a circle are equal,

$$
\begin{aligned}
\angle A B Q & =\frac{1}{2} \angle A O Q \\
& =\frac{1}{2} \times 58^{\circ}=29^{\circ}
\end{aligned}
$$

Here $O A$ is perpendicular to $T A$ because $O A$ is radius and $T A$ is tangent at A.
Thus

$$
\begin{aligned}
& \angle B A T=90^{\circ} \\
& \angle A B Q=\angle A B T
\end{aligned}
$$

Now in $\triangle B A T$,

$$
\angle A T B=90^{\circ}-\angle A B T
$$

[Board Term-2, 2015]
We have $\quad \angle A O Q=58^{\circ}$
Since angle $\angle A B Q$ and $\angle A O Q$ are the angle on the circumference of the circle by the same arc,

$$
4-3+3
$$

Perimeter of $\triangle A B C$,

$$
\begin{aligned}
p & =15+6+x+9+x \\
& =30+2 x
\end{aligned}
$$

Now area, $\quad \triangle A B C=\frac{1}{2} r p$
Here $r=3$ is the radius of circle. Substituting all values we have
or

$$
\begin{aligned}
54 & =\frac{1}{2} \times 3 \times(30+2 x) \\
54 & =45+3 x \\
x & =3
\end{aligned}
$$

Thus $A B=9 \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$.
76. In figure, two tangents $R Q$ and $R P$ are drawn from an external point R to the circle with centre O. If $\angle P R Q=120^{\circ}$, then prove that $O R=P R+R Q$.

Ans:

[Board Term-2 OD 2015]
We redraw the given figure by joining O to P as shown below.

$$
\begin{aligned}
\angle P R O & =\frac{1}{2} \angle P R Q \\
& =\frac{120^{\circ}}{2}=60^{\circ}
\end{aligned}
$$

Here $\triangle O P R$ is right angle triangle, thus

$$
\begin{aligned}
\angle P O R & =90^{\circ}-\angle P R O \\
& =90^{\circ}-60^{\circ}=30^{\circ} \\
\frac{P R}{O R} & =\sin 30^{\circ}=\frac{1}{2} \\
O R & =2 P R=P R+P R
\end{aligned}
$$

Now

Since $P R=Q R$,

$$
O R=P R+Q R \quad \text { Hence Proved }
$$

77. In figure, O is the centre of a circle. $P T$ are tangents to the circle from an external point P. If $\angle T P Q=70^{\circ}$, find $\angle T R Q$.

Ans :
[Board Term-2 Foreign 2015]
We redraw the given figure by joining O to T and Q as shown below.

Here angle $\angle T O Q$ and $\angle T P Q$ are supplementary angle.
Thus

$$
\begin{aligned}
\angle T O Q & =180^{\circ}-\angle T P Q \\
& =180^{\circ}-70^{\circ}=110^{\circ}
\end{aligned}
$$

Since angle $\angle T R Q$ and $\angle T O Q$ are the angle on the circumference of the circle by the same arc,

$$
\begin{aligned}
\angle T R Q & =\frac{1}{2} \angle T O Q \\
& =\frac{1}{2} \times 110^{\circ}=55^{\circ}
\end{aligned}
$$

78. Prove that tangents drawn at the ends of a chord of a
circle make equal angles with the chord.

Ans:

[Board Term-2 Delhi 2015]
We redraw the given figure by joining M and N to P as shown below.

Since length of tangents from an external point to a circle are equal,

$$
P M=P N
$$

Since angles opposite to equal sides are equal,

$$
\angle 1=\angle 2
$$

Now using property of linear pair we have

$$
\begin{aligned}
180^{\circ}-\angle 1 & =180^{\circ}-\angle 2 \\
\angle 3 & =\angle 4 \quad \text { Hence Proved }
\end{aligned}
$$

79. Two tangents $P A$ and $P B$ are drawn from an external point P to a circle inclined to each other at an angle of 70°, then what is the value of $\angle P A B$?
Ans :
[Board Term-2, 2012]
below.

Here angle $\angle A O B$ and $\angle A P B$ are supplementary angle.

Thus

$$
\begin{aligned}
\angle A O B & =180^{\circ}-\angle A P B \\
& =180^{\circ}-70^{\circ}=110^{\circ}
\end{aligned}
$$

$O A$ and $O B$ are radius of circle and equal in length, thus angle $\angle O A B$ and $\angle O B A$ are also equal. Thus in triangle $\triangle O A B$ we have

$$
\begin{aligned}
\angle O B A+\angle O A B+\angle A O B & =180^{\circ} \\
\angle O A B+\angle O B A & =180^{\circ}-\angle A O B \\
2 \angle O A B & =180^{\circ}-110^{\circ}=70^{\circ} \\
\angle O A B & =35^{\circ}
\end{aligned}
$$

Since $O A$ is radius and $A P$ is tangent at $A, O A \perp A P$

$$
\text { Now } \begin{aligned}
\angle O A P & =90^{\circ} \\
\angle P A B & =\angle O A P-\angle O A B \\
& =90^{\circ}-35^{\circ}=55^{\circ}
\end{aligned}
$$

80. In Figure a quadrilateral $A B C D$ is drawn to circumscribe a circle, with centre O, in such a way that the sides $A B, B C, C D$, and $D A$ touch the circle at the points P, Q, R and S respectively. Prove that. $A B+C D=B C+D A$.

Ans :

[Board Term-2 OD 2016]
Since length of tangents from an external point to a circle are equal,

As per question we draw the given circle as shown
At A,

$$
\begin{equation*}
A P=A S \tag{1}
\end{equation*}
$$

At B
$B P=B Q$
At C
$C R=C Q$
At D

$$
\begin{equation*}
D R=D S \tag{3}
\end{equation*}
$$

Adding eqn. (1), (2), (3), (4)

$$
\begin{aligned}
A P+B P+D R+C R & =A S+D S+B Q+C Q \\
A P+B P+D R+R C & =A S+S D+B Q+Q C \\
A B+C D & =A D+B C
\end{aligned}
$$

Hence Proved
81. In Figure, common tangents $A B$ and $C D$ to the two circle with centres O_{1} and O_{2} intersect at E. Prove that $A B=C D$.

Ans:
[Board Term-2 OD 2014]
Since $E A$ and $E C$ are tangents from point E to the circle with centre Q_{1}

$$
\begin{equation*}
E A=E C \tag{1}
\end{equation*}
$$

and $E B$ and $E D$ are tangents from point E to the circle with centre O_{2}

$$
\begin{equation*}
E B=E D \tag{2}
\end{equation*}
$$

Adding eq (1) and (2) we have

$$
\begin{array}{rlr}
E A+B E & =C E+E D & \\
A B & =C D \quad \text { Hence Proved }
\end{array}
$$

82. In the given figure, $B O A$ is a diameter of a circle and the tangent at a point P meets $B A$ when produced at
T. If $\angle P B O=30^{\circ}$, what is the measure of $\angle P T A$?

Ans :
[Board Term-2, 2012]
Angle inscribed in a semicircle is always right angle.

$$
\angle B P A=90^{\circ}
$$

Here $O B$ and $O P$ are radius of circle and equal in length, thus angle $\angle O B P$ and $\angle O P B$ are also equal.

Thus $\quad \angle B P O=\angle P B O=30^{\circ}$
Now $\quad \angle P O A=\angle O B P+\angle O P B$

$$
=30^{\circ}+30^{\circ}=60^{\circ}
$$

Thus

$$
\angle P O T=\angle P O A=60^{\circ}
$$

Since $O P$ is radius and $P T$ is tangent at $P, O P \perp P T$

$$
\angle O P T=90^{\circ}
$$

Now in right angle $\triangle O P T$,

$$
\angle P T O=180^{\circ}-(\angle O P T+\angle P O T)
$$

Substituting $\angle O P T=90^{\circ}$ and $\angle P O T=60^{\circ}$ we have

$$
\begin{aligned}
\angle P T O & =180^{\circ}-\left(90^{\circ}+60^{\circ}\right) \\
& =180^{\circ}-150^{\circ}=30^{\circ}
\end{aligned}
$$

Thus $\angle P T A=\angle P T O=30^{\circ}$
83. In the given figure, if $B C=4.5 \mathrm{~cm}$, find the length of $A B$.

Ans :
[Board Term-2, 2012]
Since length of tangents from an external point to a circle are equal,

$$
C B=C P=4.5 \mathrm{~cm}
$$

and

$$
C A=C P
$$

Now

$$
\begin{aligned}
A B & =A C+C B \\
& =C P+C P=2 C P \\
& =2 \times 4.5=9 \mathrm{~cm}
\end{aligned}
$$

84. In the given figure, if $A B=A C$, prove that $B E=C E$.

Ans :

[Board Term-2 OD 2017]
Since tangents from an external point to a circle are equal,

$$
\begin{align*}
A D & =A F \tag{1}\\
B D & =B E \tag{2}\\
C E & =C F \tag{3}
\end{align*}
$$

From $A B=A C$ we have
or

$$
\begin{aligned}
A D+D B & =A F+F C \\
D B & =F C
\end{aligned}
$$

$$
(A D=A F)
$$

From eq (2) and (3) we have

$$
B E=E C
$$

Hence Proved
85. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.
Ans :
[Board Term-2 OD 2017]
As per question we draw figure shown below.

Since length of tangents from an external point to a circle are equal,

$$
P A=P B
$$

Since angles opposite to equal sides are equal,

$$
\angle P A B=\angle P B A
$$

86. In Figure the radius of incircle of $\triangle A B C$ of area $84 \mathrm{~cm}^{2}$ and the lengths of the segments $A P$ and $B P$ into which side $A B$ is divided by the point of contact are 6 cm and 8 cm Find the lengths of the sides $A C$ and $B C$.

Ans :

[Board Term-2 Delhi 2012, 2014, OD Compt. 2017]
Since length of tangents from an external point to a circle are equal,

At A,

$$
\begin{equation*}
A P=A R=6 \mathrm{~cm} \tag{1}
\end{equation*}
$$

At B,

$$
\begin{equation*}
, B P=B Q=8 \mathrm{~cm} \tag{2}
\end{equation*}
$$

At C,

$$
\begin{equation*}
C R=C Q=x \tag{3}
\end{equation*}
$$

Perimeter of $\triangle A B C$,

$$
\begin{aligned}
& \qquad \begin{aligned}
p & =A P+P B+B Q+Q C+C R+R A \\
& =6+8+8+x+x+6 \\
& =28+2 x \\
\text { Now area } & \Delta A B C=\frac{1}{2} r p
\end{aligned} \text { }
\end{aligned}
$$

Here $r=4$ is the radius of circle. Substituting all values we have

$$
\begin{aligned}
& 84=\frac{1}{2} \times 4 \times(28+2 x) \\
& 84=56+4 x \\
& 21=14+x \Rightarrow x=7
\end{aligned}
$$

Thus

$$
\begin{aligned}
& A C=A R+R C=6+7=13 \mathrm{~cm} \\
& B C=B Q+Q C=8+7=15 \mathrm{~cm}
\end{aligned}
$$

87. In figure, O is the centre of the circle and $L N$ is a diameter. If $P Q$ is a tangent to the circle at K and $\angle K L N=30^{\circ}$, find $\angle P K L$.

Ans:

[Board Term-2 OD Compt 2017]
Since $O K$ and $O L$ are radius of circle, thus

$$
O K=O L
$$

Angles opposite to equal sides are equal,

$$
\angle O K L=\angle O L K=30^{\circ}
$$

Tangent is perpendicular to the end point of radius,

$$
\angle O K P=90^{\circ}
$$

(Tangent)
Now $\quad \angle P K L=\angle O K P-\angle O K L$

$$
=90^{\circ}-30^{\circ}=60^{\circ}
$$

THREE MARKS QUESTIONS

88. If tangents $P A$ and $P B$ drawn from an external point P to a circle with centre O are inclined to each other at an angle of 80°, then find $\angle P O A$.
Ans:
[Board 2020 Delhi Basic]
As per given information we have drawn the figure below.

Since $P A$ and $P B$ are the tangents, $P O$ will be angle bisector of $\angle P$

Hence,

$$
\angle A P O=40^{\circ}
$$

Now, in $\triangle A P O, \angle P A O$ is 90° because this is angle between radius and tangent.
Now

$$
\begin{aligned}
\angle P A O+\angle A P O+\angle P O A & =180^{\circ} \\
90^{\circ}+40^{\circ}+\angle P O A & =180^{\circ} \\
\angle P O A & =50^{\circ}
\end{aligned}
$$

89. An isosceles triangle $A B C$, with $A B=A C$, circumscribes a circle, touching $B C$ at $P, A C$ at Q and $A B$ at R. Prove that the contact point P bisects $B C$.
Ans :
[Board 2020 OD Basic]
As per given information we have drawn the figure below.

Since, the tangents drawn from externals points are equal,

$$
\begin{aligned}
A R & =A Q \\
B R & =B P \\
C P & =C Q
\end{aligned}
$$

Now we have, $\quad A B=A C$

$$
\begin{aligned}
& A R+B R=A Q+C Q \\
& A R+B P=A Q+C P \\
& A Q+B P=A Q+C P
\end{aligned}
$$

$$
B P=C P
$$

Hence, the point of contact P bisects $B C$.
90. Prove that the rectangle circumscribing a circle is a square.

Ans :

[Board 2020 SQP Standard]
We have a rectangle $A B C D$ circumscribe a circle which touches the circle at P, Q, R, S. We have to prove that $A B C D$ is a square.
As per given information we have drawn the figure below.

Since tangent drawn from an external point to a circle are equals,

$$
\begin{aligned}
& A P=A S \\
& P B=B Q \\
& D R=D S \\
& R C=Q C
\end{aligned}
$$

Adding all above equation we have

$$
\begin{aligned}
A P+P B+D R+R C & =A S+S D+B Q+Q C \\
A B+C D & =A D+B C
\end{aligned}
$$

Since $A B C D$ is rectangle, $A B=C D$ and $A D=B C$,
Thus

$$
\begin{aligned}
2 A B & =2 B C \\
A B & =B C
\end{aligned}
$$

Since adjacent sides are equal are equal. So, $A B C D$ is a square.
91. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Ans :
[Board 2020 Delhi Basic]
Given, a circle with centre O and tangent $A B$ at P. We take a point Q on the tangent $A B$ and join $O Q$
meeting the circle at R.

To prove that $O P \perp A B$, it is sufficient to prove that OP is shorter than any other segment joining O to any point of $A B$.

Clearly

$$
\begin{aligned}
& O P=O R \\
& O Q=O R+R Q \\
& O Q>O R \\
& O Q>O P
\end{aligned}
$$

Thus $O P$ is shorter than any other segment joining O to any other point of $A B$ and shortest line is perpendicular.
Thus
$O P \perp A B$
Hence Proved
92. In figure, two tangents $T P$ and $T Q$ are drawn to circle with centre O from an external point T. Prove that $\angle P T Q=2 \angle O P Q$.

Ans:
[Board 2020 Delhi Standard] We redraw the given figure as shown below.

Let $\angle O P Q$ be θ, then

$$
\angle T P Q=90^{\circ}-\theta
$$

Since, $T P=T Q$, due to opposite angles of equal sides we have

$$
\angle T Q P=90^{\circ}-\theta
$$

From angle sum property of a triangle we can write,

$$
\begin{aligned}
\angle T P Q+\angle T Q P+\angle P T Q & =180^{\circ} \\
90^{\circ}-\theta+90^{\circ}-\theta+\angle P T Q & =180^{\circ} \\
\angle P T Q & =180^{\circ}-180^{\circ}+2 \theta \\
& \angle P T Q=2 \theta \\
\text { Hence, } \quad & \angle P T Q=2 \angle O P Q
\end{aligned}
$$

93. In given figure, two circles touch each other at the point C. Prove that the common tangent to the circles at C, bisects the common tangent at P and Q.

Ans:
[Board 2020 OD Basic, 2020 Delhi Standard]
Here $P T$ and $T C$ are the tangents of circle A from extended point, thus

$$
P T=T C
$$

Here $T Q$ and $T C$ are the tangents of circle B from extended point, thus

$$
\begin{aligned}
Q T & =T C \\
\text { Thus, } \quad & P T
\end{aligned} \quad=Q T, ~ \begin{aligned}
P Q & =P T+T Q \\
\text { Now, } \quad & =P T+P T \\
& =2 P T
\end{aligned}
$$

Thus $\quad \frac{1}{2} P Q=P T$
Hence, the common tangent to the circle at C, bisects the common tangents at P and Q.
94. If a circle touches the side $B C$ of a triangle $A B C$ at P and extended sides $A B$ and $A C$ at Q and R, respectively, prove that $A Q=\frac{1}{2}(B C+C A+A B)$
Ans :
[Board 2020 OD Standard, 2016]
As per given information in question we have drawn
the figure below,

From the same external point, the tangent segments drawn to a circle are equal.

From the point B,

$$
B Q=B P
$$

From the point A,

$$
A Q=A R
$$

From the point $C, \quad C P=C R$
Now

$$
\begin{aligned}
A B+B C+C A & =(A Q-B Q)+(B P+P C)+(A R-C R) \\
& =(A Q-B Q)+(B Q+C R)+(A Q-C R) \\
& =2 A Q \\
A Q & =\frac{1}{2}(B C+C A+A B) \quad \text { Hence proved. }
\end{aligned}
$$

95. In the given figure, $O P$ is equal to the diameter of a circle with centre O and $P A$ and $P B$ are tangents. Prove that $A B P$ is an equilateral triangle.

Ans:
[Board Term-2, 2014]
We redraw the given figure by joining A to B as shown below.

Since $O A$ is radius and $P A$ is tangent at $A, O A \perp A P$.

Now in right angle triangle $\triangle O A P, O P$ is equal to diameter of circle, thus

$$
\begin{aligned}
O P & =2 O A \\
\frac{O A}{O P} & =\frac{1}{2} \\
\sin \theta & =\frac{1}{2} \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

Since $P O$ bisect the angle $\angle A P B$,
Hence, $\quad \angle A P B=2 \times 30^{\circ}=60^{\circ}$
Now, in $\triangle A P B$,

$$
\begin{aligned}
A P & =A B \\
\angle P A B & =\angle P B A \\
& =\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}
\end{aligned}
$$

Thus $\triangle A P B$ is an equilateral triangle.
96. From a point P, which is at a distant of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ are drawn to the circle, then the area of the quadrilateral $P Q O R$ (in cm^{2}).
Ans :
[Board Term-2, 2012]
As per the given question we draw the figure as below.

Here $O Q$ is radius and $Q P$ is tangent at Q, since radius is always perpendicular to tangent at point of contact, $\triangle O Q P$ is right angle triangle.

$$
\text { Now } \quad \begin{aligned}
P Q & =\sqrt{O P^{2}-O R^{2}} \\
& =\sqrt{13^{2}-5^{2}} \\
& =\sqrt{169-25} \\
& =\sqrt{144}=12 \mathrm{~cm}
\end{aligned}
$$

Area of triangle $\triangle O Q P$,

$$
\begin{aligned}
\Delta & =\frac{1}{2}(O Q)(Q P) \\
& =\frac{1}{2} \times 12 \times 5=30
\end{aligned}
$$

Area of quadrilateral $P Q O R$,

$$
2 \times \triangle P O Q=2 \times 30=60 \mathrm{~cm}^{2}
$$

97. In the figure, $P Q$ is a tangent to a circle with centre O. If $\angle O A B=30^{\circ}$, find $\angle A B P$ and $\angle A O B$.

Ans :

[Board Term-2 Delhi 2014]
Here $O B$ is radius and $Q T$ is tangent at $B, O B \perp P Q$

$$
\angle O B P=90^{\circ}
$$

Here $O A$ and $O B$ are radius of circle and equal. Since angles opposite to equal sides are equal,

$$
\text { Now } \begin{aligned}
\angle O A B & =\angle O B A=30^{\circ} \\
\angle A O B & =180^{\circ}-\left(30^{\circ}+30^{\circ}\right. \\
& =120^{\circ} \\
\angle A B P & =\angle O B P-\angle O B A \\
& =90^{\circ}-30^{\circ}=60^{\circ}
\end{aligned}
$$

98. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
Ans :
[Board 2020 Delhi Basic, 2017, 2014]
Let $A B$ be a diameter of a given circle and let $C D$ and $R F$ be the tangents drawn to the circle at A and B respectively as shown in figure below.

Here $A B \perp C D$ and $A B \perp E F$
Thus $\quad \angle C A B=90^{\circ}$ and $\angle A B F=90^{\circ}$
Hence $\quad \angle C A B=\angle A B F$
and

$$
\angle A B E=\angle B A D
$$

Hence $\angle C A B$ and $\angle A B F$ also $\angle A B E$ and $\angle B A D$ are alternate interior angles.

$$
C D \| E F
$$

Hence Proved
99. In $\triangle A B D, A B=A C$. If the interior circle of $\triangle A B C$ touches the sides $A B, B C$ and $C A$ at D, E and F respectively. Prove that E bisects $B C$.
Ans:
[Board Term-2 Delhi 2014, 2012]
As per question we draw figure shown below.

Since length of tangents from an external point to a circle are equal,
At A,

$$
\begin{equation*}
A F=A D \tag{1}
\end{equation*}
$$

At B

$$
\begin{equation*}
B E=B D \tag{2}
\end{equation*}
$$

At C

$$
\begin{equation*}
C E=C F \tag{3}
\end{equation*}
$$

Now we have $A B=A C$

$$
A D+D B=A F+F C
$$

$$
\begin{array}{lr}
B D=F C & (A D=A F) \\
B E=E C & (B D=B E, C E=C F)
\end{array}
$$

Thus E bisects $B C$.
100. A circle is inscribed in a $\triangle A B C$, with sides $A C, A B$ and $B C$ as $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm respectively. Find the length of $A D, B E$ and CF.
Ans :
[Board Term-2 Delhi 2013, 2012]
As per question we draw figure shown below.

We have

$$
\begin{aligned}
& A C=8 \mathrm{~cm} \\
& A B=10 \mathrm{~cm}
\end{aligned}
$$

and

$$
B C=12 \mathrm{~cm}
$$

Let $A F$ be x. Since length of tangents from an external point to a circle are equal,

At $A, \quad A F=A D=x$
At $B \quad B E=B D=A B-A D=10-x$
At $C \quad C E=C F=A C-A F=8-x$
Now

$$
\begin{align*}
B C & =B E+E C \tag{3}\\
12 & =10-x+8-x \\
2 x & =18-12=6 \\
x & =3
\end{align*}
$$

Now $A D=3 \mathrm{~cm}$,

$$
B E=10-3=7 \mathrm{~cm}
$$

and

$$
C F=8-3=5
$$

101.In the given figure, $P A$ and $P B$ are tangents to a circle from an external point P such that $P A=4 \mathrm{~cm}$
and $\angle B A C=135^{\circ}$. Find the length of chord $A B$.

Ans:

[Board Term-2 OD 2017]
Since length of tangents from an external point to a circle are equal,

$$
P A=P B=4 \mathrm{~cm}
$$

Here $\angle P A B$ and $\angle B A C$ are supplementary angles,

$$
\angle P A B=180^{\circ}-135^{\circ}=45^{\circ}
$$

Angle $\angle A B P$ and $=\angle P A B=45^{\circ}$ opposite angles of equal sides, thus

$$
\angle A B P=\angle P A B=45^{\circ}
$$

In triangle $\triangle A P B$ we have

$$
\begin{aligned}
& \angle A P B \\
&=180^{\circ}-\angle A B P-\angle B A P \\
&=180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}
\end{aligned}
$$

Thus $\triangle A P B$ is a isosceles right angled triangle
Now

$$
\begin{aligned}
A B^{2} & =A P^{2}+B P^{2}=2 A P^{2} \\
& =2 \times 4^{2}=32
\end{aligned}
$$

Hence

$$
A B=\sqrt{32}=4 \sqrt{2} \mathrm{~cm}
$$

FOUR MARKS QUESTIONS

102. In Figure, $P Q$ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at point T. Find the length of $T P$.

Ans : [Board 2019 Delhi Standard]

We redraw the given figure as shown below.
Here $O T$ is perpendicular bisector of $P Q$,

Since, $O T$ is perpendicular bisector of $P Q$,

$$
P R=Q R=4 \mathrm{~cm}
$$

In right angle triangle $\triangle O T P$ and $\triangle P T R$, we have

$$
\begin{equation*}
T P^{2}=T R^{2}+P R^{2} \tag{1}
\end{equation*}
$$

Also, $O T^{2}=T P^{2}+O P^{2}$

Substituting $T P^{2}$ from equation (1) we have

$$
\begin{aligned}
O T^{2} & =\left(T R^{2}+P R^{2}\right)+O P^{2} \\
(T R+O R)^{2} & =T R^{2}+P R^{2}+O R^{2}
\end{aligned}
$$

Now $\quad O R^{2}=O P^{2}-P R^{2}$

$$
=5^{2}-4^{2}=3^{2}
$$

Thus
$O R=3 \mathrm{~cm}$
Thus substituting $O R=3 \mathrm{~cm}$ we have

$$
(T R+3)^{2}=T R^{2}+4^{2}+5^{2}
$$

$$
T R^{2}+9+6 T R=T R^{2}+16+25
$$

$$
6 T R=32
$$

$$
T R=\frac{16}{3}
$$

$$
\begin{aligned}
\text { Now, from (1), } T P^{2} & =T R^{2}+P R^{2} \\
& =\left(\frac{16}{3}\right)^{2}+4^{2} \\
& =\frac{256}{9}+16=\frac{400}{9} \\
T P & =\frac{20}{3} \mathrm{~cm}
\end{aligned}
$$

103.If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60°, then find the length of $O P$.
Ans :
[Board 2020 SQP STD]
As per the given question we draw the figure as below.

Tangents are always equally inclined to line joining the external point P to centre O.

$$
\angle A P O=\angle B P O=\frac{60^{\circ}}{2}=30^{\circ}
$$

Also radius is also perpendicular to tangent at point of contact.

In right $\triangle O A P$ we have,

$$
\begin{aligned}
\angle A P O & =30^{\circ} \\
\text { Now, } \quad \sin 30^{\circ} & =\frac{O A}{O P}
\end{aligned}
$$

Here $O A$ is radius whose length is a, thus

$$
\begin{aligned}
\frac{1}{2} & =\frac{a}{O P} \\
\text { or } \quad O P & =2 a
\end{aligned}
$$

104. A right triangle $A B C$, right angled at A is circumscribing a circle. If $A B=6 \mathrm{~cm}$ and $B C=10 \mathrm{~cm}$, find the radius r of the circle.
Ans:
[Board 2020 Delhi Basic]
As per question we draw figure shown below.

In triangle $\triangle A B C$,

$$
A C=\sqrt{10^{2}-36^{2}}=8 \mathrm{~cm}
$$

Area of triangle $\triangle A B C$,

$$
\begin{aligned}
\Delta A B C & =\frac{1}{2} \times A B \times A C \\
& =\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Here we have joined $A O, B O$ and $C O$.
For area of triangle we have

$$
\begin{aligned}
\triangle A B C & =\triangle O B C+\triangle O C A+\triangle O A B \\
24 & =\frac{1}{2} r B C+\frac{1}{2} r A C+\frac{1}{2} r A B \\
& =\frac{1}{2} r(B C+A C+A B) \\
& =\frac{1}{2} r(6+10+8)=12 r \\
\text { or } \quad 12 r & =24
\end{aligned}
$$

Thus $r=2 \mathrm{~cm}$.
105.In figure, a circle is inscribed in a $\triangle A B C$ having sides $B C=8 \mathrm{~cm}, A B=10 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$. Find the length $B L, C M$ and $A N$.

Ans:

[Board 2019 Delhi Standard]
Tangents from external a point on a circle are always equal in length.

Let x be length of $B L$, then we have

So,

$$
B L=x=B N
$$

and

$$
L C=M C=(8-x)
$$

Since,

$$
A N=A M=(10-x)
$$

$$
A C=12
$$

$$
A M+M C=12
$$

$$
(10-x)+(8-x)=12
$$

$$
18-2 x=12 \Rightarrow x=3
$$

Hence,

$$
B L=3 \mathrm{~cm}
$$

$$
C M=8-3=5 \mathrm{~cm}
$$

and

$$
A N=10-3=7 \mathrm{~cm}
$$

106. a, b and c are the sides of a right triangle, where c is the hypotenuse. A circle, of radius r, touches the sides of the triangle. Prove that $r=\frac{a+b-c}{2}$.
Ans :
[Board Term-2 Delhi 2016]
As per question we draw figure shown below.

Let the circle touches $C B$ at $M, C A$ at N and $A B$ at P.
Now $O M \perp C B$ and $O N \perp A C$ because radius is always perpendicular to tangent
$O M$ and $O N$ are radius of circle, thus

$$
O M=O N
$$

$C M$ and $C N$ are tangent from C, thus

$$
C M=C N
$$

Therefore $O M C N$ is a square. Let
Let $\quad O M=r=C M=C N=O N$
Since length of tangents from an external point to a circle are equal,

$$
A N=A P, C N=C M \text { and } B M=B P
$$

Now taking $\quad A N=A P$

$$
\begin{aligned}
A C-C N & =A B-B P \\
b-r & =c-B M \\
b-r & =c-(a-r) \\
b-r & =c-a+r \\
2 r & =a+b-c \\
r & =\frac{a+b-c}{2} \quad \text { Hence Proved. }
\end{aligned}
$$

107. In figure O is the centre of a circle of radius 5 cm . T is a point such that $O T=13 \mathrm{~cm}$ and $O T$ intersects circle at E. If $A B$ is a tangent to the circle at E, find the length of $A B$, where $T P$ and $T Q$ are two tangents to the circle.

Ans :
[Board Term-2 Delhi 2016]
Here $\triangle O P T$ is right angled triangle because $P T$ is tangent on radius $O P$.

Thus

$$
\begin{aligned}
P T & =\sqrt{13^{2}-5^{2}} \\
& =\sqrt{169-25}=12 \mathrm{~cm}
\end{aligned}
$$

and

$$
\begin{aligned}
T E & =O T-O E \\
& =13-5=8 \mathrm{~cm}
\end{aligned}
$$

Since length of tangents from an external point to a circle are equal,

Let

$$
P A=A E=x
$$

Here $\triangle A E T$ is right angled triangle because $A B$ is tangent on radius $O E$.
In $\triangle A E T, \quad T A^{2}=T E^{2}+E A^{2}$

$$
\begin{aligned}
(T P-P A)^{2} & =8^{2}+x^{2} \\
(12-x)^{2} & =64+x^{2} \\
144-24 x+x^{2} & =64+x^{2} \\
24 x & =144-64=80 \\
x & =3.3 \mathrm{~cm} \\
A B & =2 \times x=2 \times 3.3=6.6 \mathrm{~cm}
\end{aligned}
$$

108. In the given figure, O is the centre of the circle. Determine $\angle A P C$, if $D A$ and $D C$ are tangents and $\angle A D C=50^{\circ}$.

Ans :
[Board Term-2, 2015]
We redraw the given figure by joining A and C to O as shown below.

Since $D A$ and $D C$ are tangents from point D to the circle with centre O, and radius is always perpendicular to tangent, thus

$$
\angle D A O=\angle D C O=90^{\circ}
$$

and

$$
\begin{gathered}
\angle A D C+\angle D A O+\angle D C O+\angle A O C=360^{\circ} \\
50^{\circ}+90^{\circ}+90^{\circ}+\angle A O C=360^{\circ} \\
230^{\circ}+\angle A O C=360^{\circ} \\
\angle A O C=360^{\circ}-230^{\circ}=130^{\circ}
\end{gathered}
$$

Now \quad Reflex $\angle A O C=360^{\circ}-130^{\circ}=230^{\circ}$

$$
\begin{aligned}
\angle A P C & =\frac{1}{2} \text { reflex } \angle A O C \\
& =\frac{1}{2} \times 230^{\circ}=115^{\circ}
\end{aligned}
$$

109.Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Ans :
[Board Term-2 Foreign 2017,
A circle centre O is inscribed in a quadrilateral as shown in figure given below.

Since $O E$ and $O F$ are radius of circle,

$$
O E=O F
$$

Tangent drawn at any point of a circle is perpendicular to the radius through the point contact.

Thus

$$
\angle O E A=\angle O F A=90^{\circ}
$$

Now in $\triangle A E O$ and $\triangle A F O$,

$$
\begin{gathered}
O E=O F \\
\angle O E A=\angle O F A=90^{\circ} \\
\\
O A=O A
\end{gathered}
$$

(Common side)
Thus

$$
\triangle A E O \cong \triangle A F O \quad(\mathrm{SAS} \text { congruency })
$$

$$
\angle 7=\angle 8
$$

Similarly,

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& \angle 3=\angle 4 \\
& \angle 5=\angle 6
\end{aligned}
$$

Since angle around a point is 360°,

$$
\begin{aligned}
& \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ} \\
& 2 \angle 1+2 \angle 8+2 \angle 4+2 \angle 5=360^{\circ} \\
& \angle 1+\angle 8+\angle 4+\angle 5=180^{\circ} \\
&(\angle 1+\angle 8)+(\angle 4+\angle 5)=180^{\circ} \\
& \angle A O B+\angle C O D=180^{\circ} \quad \text { Hence Proved. }
\end{aligned}
$$

110.Prove that tangent drawn at any point of a circle perpendicular to the radius through the point contact. Ans :
[Board Term-2 OD 2016]
Consider a circle with centre O with tangent $A B$ at point of contact P as shown in figure below

Let Q be point on $A B$ and we join $O Q$. Suppose it touch the circle at R.

We

$$
O P=O R
$$

(Radius)
Clearly

$$
\begin{aligned}
& O Q>O R \\
& O Q>O P
\end{aligned}
$$

Same will be the case with all other points on circle. Hence $O P$ is the smallest line that connect $A B$ and smallest line is perpendicular.

Thus
$O P \perp A B$
or,
$O P \perp P Q$
Hence Proved
111.In figure, $P Q$, is a chord of length 16 cm , of a circle of radius 10 cm . the tangents at P and Q intersect at a point T. Find the length of $T P$.

Ans :

[Board Term-2 Delhi 2014]
Here $P Q$ is chord of circle and $O M$ will be perpendicular on it and it bisect $P Q$. Thus $\triangle O M P$ is a right angled triangle.

We have

$$
\begin{aligned}
O P & =10 \mathrm{~cm} \\
P M & =8 \mathrm{~cm}
\end{aligned}
$$

$$
(P Q=16 \mathrm{~cm})
$$

Now in $\triangle O M P, O M=\sqrt{10^{2}-8^{2}}$

$$
\begin{aligned}
& =\sqrt{100-64}=\sqrt{36} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

Now $\quad \angle T P M+\angle M P O=90^{\circ}$
Also, $\quad \angle T P M+\angle P T M=90^{\circ}$

$$
\begin{aligned}
& \angle M P O=\angle P T M \\
& \angle T M P=\angle O M P=90^{\circ}
\end{aligned}
$$

Thus due to AA symmetry we have

$$
\triangle T M P \sim \Delta P M O
$$

Now

$$
\begin{aligned}
& \frac{T P}{P O}=\frac{M P}{M O} \\
& \frac{T P}{10}=\frac{8}{6} \\
& T P=\frac{80}{6}=\frac{40}{3}
\end{aligned}
$$

Hence length of $T P$ is $\frac{40}{3} \mathrm{~cm}$.
112. Two tangents $P A$ and $P B$ are drawn from an external point P to a circle with centre O, such that $\angle A P B=\angle x$ and $\angle A O B=y$. Prove that opposite angles are supplementary.
Ans :
[Board Term-2, 2011]
As per question we draw figure shown below.

Now $O A \perp A P$ and $O B \perp B P$ because tangent drawn at any point of a circle is perpendicular to the radius through the point contact.

Thus

$$
\angle A=\angle B=90^{\circ}
$$

Since, $A O B P$ is a quadrilateral,

$$
\begin{aligned}
\angle A+\angle B+x+y & =360^{\circ} \\
90^{\circ}+90^{\circ}+x+y & =360^{\circ} \\
180+x+y & =360^{\circ} \\
x+y & =180^{\circ}
\end{aligned}
$$

Therefore opposite angle are supplementary.
113.In figure $P Q$ is a chord of length 8 cm of a circle of
radius 5 cm . The tangents drawn at P and Q intersect at T. Find the length of $T P$.

Ans :

[Board Term-2 OD Compt 2017]
Since length of tangents from an external point to a circle are equal,

$$
P T=Q T
$$

Thus $\triangle T P Q$ is an isosceles triangle and $T O$ is the angle bisector of $\angle P T Q$.

Thus $O T \perp P Q$ and $O T$ also bisects $P Q$.
Thus

$$
P R=P Q=\frac{8}{2}=4 \mathrm{~cm}
$$

Since $\triangle O P R$ is right angled isosceles triangle,

$$
\begin{aligned}
O R & =\sqrt{O P^{2}-P R^{2}} \\
& =\sqrt{5^{2}-4^{2}}=\sqrt{25-16} \\
& =3 \mathrm{~cm}
\end{aligned}
$$

Now, Let $T P=x$ and $T R=y$ then we have

$$
\begin{equation*}
x^{2}=y^{2}+16 \tag{1}
\end{equation*}
$$

Also in $\triangle O P T$,

$$
\begin{equation*}
x^{2}+(5)^{2}=(y+3)^{2} \tag{2}
\end{equation*}
$$

Solving (1) and (2) we get

$$
y=\frac{16}{3} \text { and } x=\frac{20}{3}
$$

Hence, $T P=\frac{20}{3}$
114.In figure, $P Q$ is a chord of a circle O and $P T$ is a tangent. If $\angle Q P T=60^{\circ}$, find $\angle P R Q$.
Ans :
[Board Term-2 OD 2015, 2017]

We have $\quad \angle Q P T=60^{\circ}$
Here $\angle O P T=90^{\circ}$ because of tangent at radius.

$$
\text { Now } \quad \begin{aligned}
\angle O P Q & =\angle O Q P \\
& =\angle O P T-\angle Q T P \\
& =90^{\circ}-60^{\circ}=30^{\circ} \\
\angle P O Q & =180^{\circ}-(\angle O P Q+\angle O Q P) \\
& =180^{\circ}-\left(30^{\circ}+30^{\circ}\right) \\
& =180^{\circ}-60^{\circ}=120^{\circ}
\end{aligned}
$$

Now Reflex $\angle P O Q=360^{\circ}-120^{\circ}=240^{\circ}$

$$
\begin{aligned}
\angle P R Q & =\frac{1}{2} \text { Reflex } \angle P O Q \\
& =\frac{1}{2} \times 240^{\circ}=120^{\circ}
\end{aligned}
$$

115. In figure, a circle with centre O is inscribed in a quadrilateral $A B C D$ such that, it touches the sides $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively. If $A B=29 \mathrm{~cm}, A D=23 \mathrm{~cm}, \angle B=90^{\circ}$ and $D S=5 \mathrm{~cm}$, then find the radius of the circle (in $\mathrm{cm})$.

Ans :

[Board Term-2, 2013]
Since length of tangents from an external point to a circle are equal,

$$
\begin{aligned}
& D R=D S=5 \mathrm{~cm} \\
& A R=A Q \\
& B Q=B P
\end{aligned}
$$

Now

$$
\begin{aligned}
A R & =A D-D R \\
& =23-5=18 \mathrm{~cm} \\
A Q & =A R=18 \mathrm{~cm} \\
Q B & =A B-A Q \\
& =29-18=11 \mathrm{~cm} \\
P B & =Q B=11
\end{aligned}
$$

Now $\angle O Q B=\angle O P B=90^{\circ}$ because radius is always perpendicular to tangent.

Thus

$$
O P=O Q=P B=B Q
$$

So, $P O Q B$ is a square. Hence, $r=O P=P B=11 \mathrm{~cm}$
116. $P B$ is a tangent to the circle with centre O to $B . A B$ is a chord of length 24 cm at a distance of 5 cm from the centre. It the tangent is length 20 cm , find the length of $P O$.

Ans:

[Board Term-2 Delhi 2015]
We redraw the given figure by joining O to B as shown below.

Here $\triangle O M B$ right angled triangle because $A B$ is chord and $O M$ is perpendicular on it.
In right angled triangle $\triangle O M B$ we have,

$$
\begin{aligned}
O B^{2} & =O M^{2}+M B^{2} \\
& =5^{2}+12^{2}=13^{2}
\end{aligned}
$$

Thus

$$
O B=13
$$

Here $\triangle O B P$ right angled triangle because $P B$ is tangent on radius $O B$.

This in right angled triangle $\triangle O B P$ we have,

$$
\begin{aligned}
O P^{2} & =O B^{2}+B P^{2} \\
& =13^{2}+20^{2}=569
\end{aligned}
$$

Thus

$$
O P=\sqrt{569}=23.85 \mathrm{~cm}
$$

117. $A B$ is a chord of circle with centre O. At B, a tangent $P B$ is drawn such that its length is 24 cm . The distance of P from the centre is 26 cm . If the chord $A B$ is 16 cm , find its distance from the centre.

Ans :
[Board Term-2 Delhi 2014, 2012]
We redraw the given figure by joining O to B as shown below.

Here we have drawn perpendicular $O C$ on chord $A B$. Thus Triangle $\triangle O C B$ is also right angled triangle, We have $P B=24 \mathrm{~cm}, O P=26 \mathrm{~cm}$.
Triangle $\triangle O P B$ is right angled triangle because $P B$ is tangent at radius $O B$ and $\angle O P B=90^{\circ}$.
In right angled $\triangle O P B$, we have

$$
\begin{aligned}
O B & =\sqrt{O P^{2}-B P^{2}} \\
& =\sqrt{26^{2}-24^{2}} \\
& =\sqrt{676-576}=\sqrt{100} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

Since perpendicular drawn from the centre to a chord bisect it, we have

$$
B C=\frac{1}{2} A B=\frac{16}{2}=8 \mathrm{~cm}
$$

Now in $\triangle O B C, O C^{2}=O B^{2}-B C^{2}$

$$
\begin{aligned}
& =10^{2}-8^{2}=36 \\
O C & =6 \mathrm{~cm}
\end{aligned}
$$

Thus distance of the chord from the centre is 6 cm .
118. From a point T outside a circle of centre O, tangents $T P$ and $T Q$ are drawn to the circle. Prove that $O T$ is the right bisector of line segment $P Q$.
Ans :
[Board Term-2 Delhi 2015]
A circle with centre O. Tangents $T P$ and $T Q$ are drawn from a point T outside a circle as shown in figure below.

Since length of tangents from an external point to a circle are equal,

$$
T P=T Q
$$

Angle $\angle T P R$ and $\angle T Q R$ are opposite angle of equal sides, thus

$$
\angle T P R=\angle T Q R
$$

Now in $\triangle P T R$ and $\triangle Q T R$

$$
\begin{aligned}
T P & =T Q \\
T R & =T R \\
\angle T P R & =\angle T Q R
\end{aligned}
$$

Thus

$$
\Delta P T R \cong \Delta Q T R
$$

and

$$
P R=Q R
$$

and $\quad \angle P R T=\angle Q R T$
But $\angle P R T+Q R T=180^{\circ}$ as $P Q$ is line segment,

$$
\angle P R T=\angle Q R T=90^{\circ}
$$

Therefore $T R$ or $O T$ is the right bisector of line
segment $P Q$.
Hence proved.
119.In Figure, $P Q$ and $R S$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $P Q$ at A and $R S$ at B. Prove that $\angle A O B=90^{\circ}$.

Ans:
[Board 2019 OD STD, 2014, 2012]
We redraw the given figure as shown below.

In $\triangle D O A$ and $\triangle C O A, D A$ and $A C$ are tangents drawn from common point,
Thus

$$
D A=A C
$$

Due to angle between tangent and radius,

$$
\angle O D A=\angle O C A=90^{\circ}
$$

Due to radius of circle,

$$
O D=O C
$$

By SAS symmetry we have

$$
\triangle D O A \cong \triangle C O A
$$

Hence, by CPCT, $\angle 1=\angle 2$
i.e., $\quad \angle D O A=\angle C O A$

Similarly, by SAS

$$
\triangle B O C=\triangle B O E
$$

and by CPCT $\quad \angle 3=\angle 4$
i.e., $\quad \angle C O B=\angle B O E$

Now, angles on a straight line,

$$
\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}
$$

From equation (1) and (2) we have

$$
\begin{aligned}
2 \angle 2+2 \angle 3 & =180^{\circ} \\
\angle 2+\angle 3 & =90^{\circ}
\end{aligned}
$$

i.e., $\quad \angle A O C+\angle B O C=90^{\circ}$

$$
\text { or } \quad \angle A O B=90^{\circ}
$$

Hence Proved
120. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans :
[Board 2020 Delhi STD, 2013, 2014]
Let $A B C D$ be the parallelogram.

$$
\begin{equation*}
A B=C D, A D=B C \tag{1}
\end{equation*}
$$

Since length of tangents from an external point to a circle are equal,

At A,

$$
\begin{equation*}
A P=A S \tag{2}
\end{equation*}
$$

At B
$B P=B Q$
At C

$$
\begin{equation*}
C R=C Q \tag{3}
\end{equation*}
$$

At D
$D R=D S$
Adding above 4 equation we have

$$
A P+P B+C R+D R=A S+B Q+C Q+D S
$$

or,

$$
A B+C D=A D+B C
$$

From (1)

$$
2 A B=2 A D
$$

or

$$
A B=A D
$$

Thus $A B C D$ is a rhombus.
121.In given figure, $P A$ and $P B$ are tangents from a point P to the circle with centre O. At the point M, other tangent to the circle is drawn cutting $P A$ and $P B$ at K and N. Prove that the perimeter of $\triangle P N K=2 P B$

Ans :
[Board Term-2, 2012]
Since length of tangents from an external point to a circle are equal,

$$
\begin{aligned}
P A & =P B \\
K M & =K A \\
M N & =B N \\
K N & =K M+M N \\
& =K A+B N
\end{aligned}
$$

Now

Now perimeter of $\triangle P N K$

$$
\begin{aligned}
p & =P N+K N+P K \\
& =P N+B N+K A+P K \\
& =P B+P A \\
& =2 P B \quad(P A=P B)
\end{aligned}
$$

122.In the figure, the $\triangle A B C$ is drawn to circumscribe a circle of radius 4 cm , such that the segments $B D$ and $D C$ are of lengths 8 cm and 6 cm respectively. Find $A B$ and $A C$.

Ans:
[Board Term-2 Delhi 2014, 2012]
We redraw the given circle by joining $A O, B O$ and $C O$ shown in figure below. Let length of $A F$ be x.

Since length of tangents from an external point to a circle are equal,

At A,

$$
\begin{equation*}
A F=A E=x \tag{2}
\end{equation*}
$$

At B

$$
\begin{equation*}
B F=B D=8 \mathrm{~cm} \tag{3}
\end{equation*}
$$

At C
$C D=C E=6 \mathrm{~cm}$
Now

$$
\begin{align*}
& A B=x+8 \tag{4}\\
& A C=x+6 \\
& B C=8+6=14 \mathrm{~cm}
\end{align*}
$$

Perimeter of circle

$$
\begin{aligned}
p & =A B+B C+C A \\
& =x+8+14+x+6 \\
& =2(x+14)
\end{aligned}
$$

Semi-perimeter of circle

$$
s=\frac{1}{2} p=x+14
$$

Area or triangle $\triangle A B C$

$$
\begin{align*}
\Delta A B C & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{48 x^{2}+672 x} \tag{1}
\end{align*}
$$

Area or triangle $\triangle A B C$,

$$
\begin{align*}
\Delta A B C & =\frac{1}{2} r p \\
& =\frac{1}{2} \times 4 \times 2(x+14) \\
& =4(x+14) \tag{2}
\end{align*}
$$

From equation (1) and (2) we have

$$
\begin{aligned}
48 x^{2}+672 x & =16(x+14)^{2} \\
48 x(x+14) & =16(x+14)^{2} \\
3 x & =x+14
\end{aligned}
$$

or,

$$
x=7
$$

Thus
and

$$
A C=6+7=13 \mathrm{~cm}
$$

$$
A B 8+7=15 \mathrm{~cm}
$$

123.In the figure, tangents $P Q$ and $P R$ are drawn from an external point P to a circle with centre O, such that $\angle R P Q=30^{\circ}$. A chord $R S$ is drawn parallel to the tangent $P Q$. Find $\angle R Q S$.

Ans :
[Board Term-2 Delhi 2015]
Since length of tangents from an external point to a circle are equal,

$$
\begin{aligned}
P R & =P Q \\
\text { Now } \quad \angle P R Q & =\angle P Q R=\frac{180^{\circ}-30^{\circ}}{2} \\
& =\frac{150^{\circ}}{2}=75^{\circ}
\end{aligned}
$$

Since $S R \| Q P, \angle S R Q$ and $\angle R Q P$ are alternate angle,

$$
\angle S R Q=\angle R Q P=75^{\circ}
$$

Thus

$$
S Q=R Q
$$

and $\quad \angle R S Q=\angle S R Q=75^{\circ}$
In triangle $\triangle A Q R$,

$$
\begin{aligned}
\angle S Q R+\angle Q S R+\angle Q R S & =180^{\circ} \\
\angle S Q R+75^{\circ}+75^{\circ} & =180^{\circ} \\
\angle S Q R & =180^{\circ}-150^{\circ}=30^{\circ}
\end{aligned}
$$

Thus $\angle S Q R=30^{\circ}$.
124.In the given figure, $A D$ is a diameter of a circle with centre O and $A B$ is a tangent at $A . C$ is a point on the circle such that $D C$ produced intersects the
tangent at B and $\angle A B C=50^{\circ}$. Find $\angle A O C$.

Ans:

[Board Term-2 2015]
Tangent drawn at any point of a circle is perpendicular to the radius through the point contact.
Therefore $\quad \angle A=90^{\circ}$
Now in $\triangle D A B$ we have

$$
\begin{aligned}
\angle D+\angle A+\angle B & =180^{\circ} \\
\angle D+90^{\circ}+50^{\circ} & =180^{\circ} \\
\angle D & =40^{\circ}
\end{aligned}
$$

Angle subtended at the centre is always 2 time of angle subtended at circumference by same arc. Thus

$$
\begin{aligned}
\angle A O C & =2 \angle A D C=2 \angle D \\
& =2 \times 40^{\circ}=80^{\circ}
\end{aligned}
$$

125.In figure $P Q$ is a tangent from an external point P to a circle with centre O and $O P$ cuts the circle at T and $\angle Q O R$ is a diameter. If $\angle P O R=130^{\circ}$ and S is a point on the circle, find $\angle 1+\angle 2$.

Here $\angle O Q P=90^{\circ}$ because radius is always perpendicular to tangent at point of contact.
Angle subtended at the centre is always 2 time of angle subtended at circumference by same arc. Thus

$$
\begin{aligned}
\angle 2 & =\frac{1}{2} \angle T O R=\frac{1}{2} \angle P O R \\
& =\frac{1}{2} \times 130^{\circ} \quad 65^{\circ}
\end{aligned}
$$

Now

$$
\angle P O Q=180^{\circ}-130^{\circ}=50^{\circ}
$$

$$
\begin{aligned}
\angle 1 & =180^{\circ}-\angle O Q P-\angle P O Q \\
& =180^{\circ}-90^{\circ}-50^{\circ}=40^{\circ}
\end{aligned}
$$

Now

$$
\angle 2+\angle 1=65^{\circ}+40^{\circ}=105^{\circ}
$$

126. In the figure $A B$ and $C D$ are common tangents to two circles of unequal radii. Prove that $A B=C D$.

Ans:
[Board Term-2 Delhi Compt. 2017]
We redraw the given figure by extending $A B$ and $B D$ which intersect at P as shown in figure below

Since length of tangents from an external point to a circle are equal,
and

$$
\begin{aligned}
& P A=P C \\
& P B=P D
\end{aligned}
$$

Now,

$$
\begin{array}{rlr}
P A-P B & =P C-P D & \\
A B & =C D \quad \text { Hence Proved }
\end{array}
$$

127. In the given figure, $P A$ and $P B$ are tangents to the circle from an external point $P . C D$ is another tangent touching the circle at Q. If $P A=12 \mathrm{~cm}$, $Q C=Q D=3 \mathrm{~cm}$, then find $P C+P D$.

Ans :
Since length of tangents from an external point to a circle are equal,
and

$$
\begin{aligned}
C A & =C Q=3 \mathrm{~cm} \\
D Q & =D B=3 \mathrm{~cm} \\
P B & =P A=12 \mathrm{~cm} \\
P A+P B & =P C+C A+P D+D B \\
P C+P D & =P A-C A+P B-D B \\
& =12-3+12-3=18 \mathrm{~cm}
\end{aligned}
$$

128. In a right angle $\triangle A B C, B C=12 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$. Find the radius of the circle inscribed in this triangle.
Ans :
[Board Term-2 Delhi 2014]
Let the radius of circle be x. As per given in question we draw the figure shown below.

Since length of tangents from an external point to a circle are equal,
At A,

$$
\begin{equation*}
A P=A R=5-x \tag{1}
\end{equation*}
$$

At B

$$
\begin{equation*}
B P=B Q=x \tag{2}
\end{equation*}
$$

At C

$$
\begin{equation*}
C R=C Q=12-x \tag{3}
\end{equation*}
$$

Here, $A B=5 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $\Delta B=90^{\circ}$
Now

$$
\begin{aligned}
A C & =\sqrt{12^{2}+5^{2}}=\sqrt{144+25} \\
& =\sqrt{169}=13 \mathrm{~cm}
\end{aligned}
$$

Now

$$
\begin{aligned}
A C & =A R+R C \\
13 & =5-x+12-x \\
2 x & =17-13=4 \\
x & =\frac{4}{2}=2 \mathrm{~cm}
\end{aligned}
$$

Hence, radius of the circle is 2 cm .

